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Abstract

We developed a machine learning framework to classify
lightning radio signals and detect terrestrial gamma-ray
flashes (TGFs). Energetic in-cloud pulses (EIPs, >150 kA)
have been connected to a subset of TGFs, making it possi-
ble to detect TGFs on a continuous and large scale. How-
ever, manually searching for EIPs among many non-EIP
events can be time-consuming, especially when using a
lower peak current threshold. To address this issue, we used
spectral clustering on low-dimensional features extracted
from raw radio waveforms using an autoencoder. This re-
vealed that +EIPs form a distinct class of waveform, com-
prising 6-7% of the total population. The resulting labeled
dataset are used to train a supervised convolutional neural
network (CNN) that targets +EIPs. Our CNN models iden-
tify on average 95.2% of true +EIPs with accuracy up to
98.7%, representing a powerful tool for +EIP classification.
We then applied the pretrained CNN classifier to identify
lower peak current EIPs (LEIPs, >50 kA) in a larger dataset.
Among 10 LEIPs coincident with Fermi TGF observations,
2 previously reported TGFs and 2 unreported but suspected
TGFs are found, while the majority were not associated
with detectable TGFs, which suggests a more complicated
LEIP-TGF relationship that calls for further study.

1 Introduction

Machine learning (ML) classifiers are a useful tool for au-
tomatically classifying images and waveforms from large
datasets[1]. Previous studies have used ML to classify dif-
ferent types of lightning signals[2, 3], but the research and
application of these approaches is still in its early stages.
In this work, we developed a framework combining un-
supervised clustering and supervised classification to ex-
plore patterns in a large dataset of lightning radio signals
and classify complicated signals. We used this tool to
identify energetic in-cloud pulses (EIPs, peak current >150
kA), which could be used to study terrestrial gamma-ray
flashes (TGFs)[4, 5]. TGFs are energetic phenomena pro-
duced by relativistic runaway electron avalanche processes

in thunderstorms[4], but they are difficult to observe. EIPs
have been connected to a subset of TGFs, so studying EIPs
can help improve our understanding of TGFs[6, 7]. We
demonstrated the effectiveness of our ML-based tool for
identifying EIPs, which could be used for large-scale, con-
tinuous detection of TGFs on the ground.

2 Data and Methodology

2.1 Dataset

We used ground-based low-frequency (LF) magnetic wave-
form data recorded near Duke University (DU) and Florida
Institute of Technology (FT). The data was collected by
sensors with two orthogonal magnetic coils that operated at
approximately 1-300 kHz, with a sampling rate of 1 MS/s
and time synchronized by GPS. We selected high peak cur-
rent events based on peak current, polarity, time, and lo-
cation provided by the U.S. National Lightning Detection
Network (NLDN). From February 2020 to August 2021,
we captured a total of 11,049 events that met these crite-
rias. We also prepared a larger dataset with a lower positive
NLDN polarity peak current threshold for identifying LEIP
events. This dataset consisted of 32,775 events from March
2021 to December 2021. Meanwhile, we used gamma-ray
data from the Fermi gamma-ray burst monitor (GBM) to
verify if the detected LEIPs were coincident with TGF pho-
ton counts.

2.2 A machine learning framework for light-
ning classification

As shown in Fig1, a framework for classifying waveforms
using a combination of unsupervised and supervised meth-
ods is developed. An unsupervised clustering model is used
to explore patterns in a large dataset and group waveforms
with similar features. These groups are then analyzed to
determine their categories. The preliminary EIP/non-EIP
labels are then manually refined and used to train a CNN
model. The pretrained CNN model is then used to search
for more EIPs in a larger dataset with a lower peak current
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Figure 1. A framework merging unsupervised and super-
vised machine learning for lightning classification.

threshold between 50-150 kA, which was not feasible with-
out ML.

2.3 Unsupervised clustering

Unsupervised clustering is used to understand the big light-
ning dataset. As illustrated in Fig.2, we performed spectral
clustering on the features extracted by autoencoding. The
autoencoder model consists of an encoder that encodes the
input waveform into a small hidden layer and a decoder that
reconstructs the original waveform from the hidden layer.
The small hidden layer contains a compressed representa-
tion of the original waveform data, which is suitable for
further spectral clustering. Analysis will be performed on
the grouped clusters to understand the pattern of the entire
dataset.
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Figure 2. Illustration of unsupervised learning using an
autoencoder model and spectral clustering.

2.4 Supervised classification with CNN

With a good understanding of the different kinds of ener-
getic lightning events from the above unsupervised clus-
tering as well as previous studies on lightning processes[5,
6, 7], we are able to pre-categorize these events and train
a more effective classifier using supervised CNN classi-
fication. As shown in Fig.3, the CNN model consists of
convolutional layers and classification layers, and uses the
SoftMax function to normalize the output and classify the
data into two categories: EIP and non-EIP. We used the "re-
peated K-folds validation" method to evaluate and tune the
model’s performance. In this work, we only adjust one hy-
perparameter, which is the weight of the EIP class in the
loss function, in order to develop a model that has properly
balanced EIP sensitivity and accuracy.

3 Results and Analysis

Fig.4b shows the results of clustering data using the t-
SNE method. The spectral clustering algorithm divided the
data into 7 groups. Fig.4c shows that the two most dis-
tinct groups are likely +EIPs and +NBEs, based on pre-
vious research[5]. Groups 1, 2, and 3 are thought to be
+CGs with progressively smaller amplitudes of ionosphere-
reflected sky waves. The nature of the lightning events in
Groups 4 and 5 is less clear, so they are grouped together
with Groups 1-3 as " +CGs and others".

Fig.4a presents the visualization and statistics of manu-
ally labeled events, which were divided into three cate-
gories: +EIPs (6.7%), +NBEs (1.9%), and +CGs and oth-
ers (91.4%). These labels serve as a reference for evaluating
the accuracy of the clustering model. The labels assigned to
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Figure 3. A framework merging unsupervised and super-
vised machine learning for lightning classification.

the grouped points by the spectral clustering algorithm for
+EIPs correctly identified 90.7% of true +EIPs with an ac-
curacy of 89.5%. However, many +EIPs were misclassified
as belonging to Group 3 and Group 4 when the propagation
distance was greater than approximately 600 km. There-
fore, we decided to use a supervised classification model,
which allows us to be more targeted in our EIP classifica-
tion.

It is worth noting that +EIPs only make up 6-7% of the
entire dataset, which means that the classification is being
done on an imbalanced dataset with a majority of non-EIP
events (∼93%) and a minority of EIP events. To address
this issue, we trained four CNN models that assign different
weights to the EIP and non-EIP classes in the loss function.
The models, from CNN1 to CNN4, increasingly prioritize
including as many true EIPs as possible, but this also affects
the overall accuracy. We use standard definitions, with EIP
sensitivity defined as the ratio of model-predicted true EIPs
to all true EIPs, and EIP accuracy defined as the ratio of
model-predicted true EIPs to all model-predicted EIPs. Our
goal is to achieve both high EIP sensitivity and accuracy,
but there is a tradeoff between the two measures.

Fig.5 illustrates the classification performance of the four
CNN models. Each model was trained and tested on 100
random splits of the original dataset of >150 kA events.
There are a total of 4×100=400 data points in Fig.5. The
CNN classification models perform well with a mean EIP
sensitivity of 95.2% and an EIP accuracy as high as 98.7%,
CNN2 models appear to be best choice for practical use.
This demonstrates that supervised CNN classification is a
powerful approach for +EIP classification and for lightning
classification in general.

We then applied the pretrained CNN2 model to search for
+EIPs in a larger dataset of >50 kA lightning events, in or-
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Figure 4. t-SNE visualization of clustering results and
group average waveforms.
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Figure 5. Performance of 4 CNN models with different
weights on EIP class in the loss function.
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der to identify events with typical +EIP waveform shapes
and potentially detect more TGFs that were previously not
feasible without machine learning. Among the 32,775
events, the CNN model was highly confident (score >0.9)
in classifying 998 events as +EIPs, which were considered
as "true" +EIPs.

We examined the Fermi-GBM photon data at the time
of these LEIPs to determine if they generated satellite-
detectable TGFs. 10 LEIP events are found to be matched
with Fermi within 600 km and 2 milliseconds. A case-by-
case analysis of the LF waveforms and time-aligned photon
counts of these 10 events revealed that 2 were definitive
TGFs that had been previously reported by Fermi, and 2
were suspected TGFs that had not been reported by Fermi
but had a small peak (verified to not be caused by cos-
mic rays) higher than the environmental noise in the pho-
ton profile. These 4 cases are shown in Fig.6. However,
the remaining 6 LEIPs did not appear to be associated with
detectable TGFs. It is unclear whether this is because the
TGF source was located deep in the cloud and not bright
enough to be detected by the satellite, or simply because
some LEIPs do not produce TGFs. These results suggest
that the relationship between TGFs and EIPs of lower peak
current (particularly those in the 50-100 kA range) is com-
plex and requires further study.
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Figure 6. LF waveforms and Fermi photon counts for 4
+LEIPs. 2 are Fermi-reported TGFs and 2 are suspected
TGFs but not reported by Fermi.

4 Summary

We developed machine learning classifiers that combine un-
supervised and supervised methods to accurately identify

+EIPs (>150 kA) with high sensitivity. These classifiers
represent a powerful tool for monitoring EIP-type TGFs
and classifying lightning events in general. When we ap-
plied these classifiers to lower peak current EIPs, we found
that the majority of EIPs in the range of 50-100 kA did not
seem to be associated with detectable TGFs. This finding
warrants further investigation.
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