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Abstract—In this paper, we propose a sufficient stability 
condition for networked systems with multiple delays 
based on the 2-D polynomials and 2-D Hurwitz-Schur 
stability. The main advantage of the new stability 
condition is that it is applicable to the general case of 
networked systems with multiple, incommensurate delays 
yet numerically tractable. The characteristic polynomials 
of networked systems are mapping into 2-D hybrid 
polynomials, then to test the Hurwitz-Schur stability can. 
determine the networked systems, examples including 
system simulations verify the validity of the proposed test 
algorithms. 
Index Terms—Networked systems, quasipolynomials, 2-D 
hybrid polynomials, 2-D  Hurwitz-Schur stability test 

I. INTRODUCTION 
In many engineering applications, including networked 
systems, time delay is a so urce of instability [1-22]. In the 
networked systems, the individual subsystems are 
communicating with each other via digital networks, like 
Internet or wireless LAN. Obviously, these networks induce 
some communication delay that typically worsens the overall 
system performance, thus, networked systems can be regarded 
as a class of tim e-delay systems. However, this important 
time-delay property is often neglected, e.g. [21], or it is taken 
into account under conservative assumptions, e.g. modeling 
constant delays that are id entical for a ll communication 
channels, e.g. [22]. Therefore, the networked systems with 
severe time-delay may face gr eat challenges in achie ving 
desired stability. In our work, we assume that all 
communication delays are uncertain but of upper-bound. This 
can be justified by a sui table communication protocol. 
Moreover, the delays may be different for all channels but 
have upper limits. This motivates our interest in studying the 
stability of networked systems with multiple delays. 
Unfortunately, the stability analysis of networked systems 
with multiple delays is a difficult and very tricky problem.  

There exist some stability analysis tools based on 
Lyapunov–Krasovskii theorems and linear matrix inequality 
(LMI) techniques[8-15], however, proper selection of  
Lyapunov–Krasovskii functional is crucial for deriving 
stability conditions [16]. Different Lyapunov–Krasovskii 
functions may result in different stability conditions with 

different conservatism and advantage. The second problem of 
LMI techniques lies on the huge complexity of constructing 
the LMI equations for multiple time-delay systems.  

Different from the LMI techniques based on Lyapunov–
Krasovskii theorems, 2-D Hurwitz-Schur stability test of 2-D 
hybrid polynomial ( , )B s z  provides a n ew approach to 
determine the stability of linear time-delay systems [1-3,17-
19], and the two problems of LMI techniques may be solved 
by the proposed 2-D approach in this paper. Though the 
results of [17-19] are derived from 2-D polynomial ( , )B s z , 
the delays of the time-delay systems need to be random, and 
independent from zero to infinite. The results [17-19] of delay 
systems are not suitable for the net worked systems whose 
delays are finite and of upper bound.  

Similar to the 2-D approaches for time-delay systems [1-3], 
this paper transforms the characteristic polynomial of the 
networked systems into 2-D polynomial ( , )B s z , then 
develops a st ability test th eorem based 2-D polynomial 

( , )B s z , which is a sufficient condition for the stability of the 
networked systems with multiple delays. Examples including 
system simulations are prov ided to verify the validity of the 
proposed theorems. 
 

II. PROBLEM STATEMENT 
The networked systems with multiple delays can be defined 

by state-space model, the state-space model is described as   

0
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where , 0,1,...,k k K=A and mB are )( AA NN × and 

)( BA NN × constants’ matrices, respectively; ( )tu and 
( )ty are the input signal vector and output signal vector of the 

time-delay system, respectively; the delays [0, ]kkτ ∈ τ , 

kτ is a finite constant, 1, 2,...,k K= .  

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS 
DOI: 10.46300/91014.2021.15.17 Volume 15, 2021

E-ISSN: 2074-1278 102



Taking Laplace transform to the system (1), we can get the 
solution of t he networked system with multiple delays in s 
domain as follows 
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The characteristic polynomial of the networked systems in 
(1) can be obtained from (2), 

    0
1
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K
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k
k

B s sI A A − τ

=

⎛ ⎞⎟⎜ − − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑                              (3) 

The characteristic polynomial (2) can be extended into 
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k
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The characteristic polynomials of the networked system with 
multiple delays are quasipolynomials, and  th e roots of the 
quasipolynomials are continuous and varying in complex 
plane with the delay, which leads to be difficult to determine 
the stability of n etworked systems, especially for multiple 
delay systems. The quasi-polynomial (4) has infinite number 
of roots, but any bounded region of the complex plane 
contains only a finite number of them. Roots that are far from 
the origin can be assi gned to a finite number of asymptotic 
chains.  

III. MAIN RESULTS 
The stability of networked systems in (1) depends on the 

location of the roots of their characteristic polynomials (4), 
and it is shown as following theorem. 
 
Theorem 1: The networked systems in (1) are asymptotically 
stable if and only if  

,0 ,
0 1 0

( ) 0, Re 0
A A

k

N NK
sm m

m m k
m k= m

B s b s b s e sτ−

= =

= + ≠ ≥∑ ∑∑      (5) 

where [0, ]kkτ ∈ τ , kτ is a finite constant, 1, 2,...,k K= .  
Proof: Compared the system (1) with the time-delay systems 
in [1-3, 17-19], we know that the networked systems can be 
regarded as a class of tim e-delay systems. Thus the stability 
theorem for time-delay systems is suitable for the system (1).  
Q.E.D. 

Theorem 1 established the stability relationship of 
networked systems and their characteristic polynomials, and it 
is a 1-D stability test for the quasi-polynomials in (4).  
    Theorem 1 is a necessary and su fficient condition for th e 
stability of networked systems in (1), while its test is a  
numerical algorithm with infinite computation amount. To 
solve the problem, this paper tries to develop a test algo rithm 
based 2-D polynomial ( , )B s z . 

To the quasi-polynomials (4), we can associate the 
polynomials with two independent complex variables s and z 
given by [1, 2] 
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+∑ ∑∑                     (6) 

where esz = . [0, ]kkτ ∈ τ , kτ is a fi nite constant, 

1, 2,...,k K= . 
In this paper, we de velop following theorem with the 

two-variable polynomial ( , )B s z to determine the stability 
conditions (5). 
 
Theorem 2: the quasi-polynomial with multiple delays in (4) 
is stable if  

(i) ,0 ,
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(1, ) 0
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and 

(ii) jj
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for all [0, 2 ]ω π∈  and  0Re ≥s , [0, ]kkτ ∈ τ , kτ is a 

finite constant, 1, 2,...,k K= . 
The proof of Theorem 2 needs following Lemmas. Lemma 

1 changes the 1-D stability test of quasi-polynomials into that 
of  two-variable polynomial ( , )B s z  [1-3]. 
 
Lemma 1: Given the two-variable polynomial ( , )B s z  

defined by (6), the quasi-polynomial with interval delays in (4) 
is stable if  
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Proof: Assume that 0s and 0z are the roots of ( , )B s z , 

according to (9), 0 0( , )=0B s z , we will have 

0 0Re 0,| |<1s z< . It means that (9) is equivalent to  

0 0 0 0( , )=0, Re 0,| |<1B s z s z<  for [0, ]kkτ ∈ τ , kτ is a 

finite constant, 1, 2,...,k K= . 
From (6), we know that the quasi-polynomial 
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= +∑ ∑∑ is transformed into 

2-D polynomial 
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by letting esz = [1,2,7,8], so the quasi-polynomial ( )B s  is a 

branch function of ( , )B s z  due to sz e= . Therefore the 
stability of ( , )B s z is a sufficient condition of that of ( )B s , 
and it means that the condition (9) means the condition (5): 

,0 ,
0 1 0

( ) 0, Re 0
A A

k

N NK
sm m

m m k
m k= m

B s b s b s e sτ−

= =

= + ≠ ≥∑ ∑∑ . 

                                                             Q.E.D. 
 

The condition (9) of Lemma 1  is 2-D Hu rwitz-Schur 
stability of two-variable polynomial [1-3], an algebraic test 
algorithm for the stability of ( , )B s z  is provided  by [1-3]. 
 
Lemma 2: Given the two-variable polynomial ( , )B s z  

defined by (13) or (14), it is stable iff 
(i)   (1, ) 0B z ≠  for  1|| ≥z                                             (10) 
and  
(ii) j( , e ) 0B s ω ≠   for all [0, 2 ]ω π∈  and  0Re ≥s  (11) 

The proof of Lemma 2 needs following lemma. 
 
Lemma 3: Assume that )(zf is a non-constant algebraic  
function such that 0)(Re ≠zf for 1|| ≥z . Then t he 
minimum value )(Re zf for 1|| ≥z can not occ ur at 
some z where 1|| >z , where fRe denotes the real part  
absolute value of the complex function f . 
Proof: Suppose that the minimum value of )(Re zf  for 

1|| ≥z occurs at some point az = , where Re ( ) 0f a > , and 

it occurs as one of the values on the branch 1f of )(zf . The 

values of )(1 zf  near “a”  on a disk of radius r about “a” (so 
small that it is en tirely within 1|| >z ) are given 

by ∑
∞

=

=
Ni

i
iuaug )( , where δ≤−+= ||, azuaz r . 

The number r is a fixed-positive integer determined only 
by 1f . Since by assumption )(1 zf is bounded for 1|| ≥z , it 
follows that 0≥N . Therefore, as a function of the complex 
variable u , the function )(ug is bounded and analytic 

for ru
1

|| δ≤ . Moreover, it fo llows that the values  )(1 zf  

for δ≤− || az are given by )(ug for ru
1

|| δ≤ . 

In fact for each value of )(1 zf for δ≤− || az there exists 

u , ru
1

|| δ≤ such that |||| zu = and )( )(1 ugzf = . 

Since )(ug is bounded and an alytic, )(Re ug cannot 

reach its m inimum value for ru
1

|| δ≤ at 0=u . Therefore, 

)(Re 1 zf  cannot have its minimum value at az = , a 
contradiction. Therefore, it canno t happen that )(Re zf  
assumes its minimum value for some z where 1|| >z . 

                    Q.E.D. 
 
Proof of Lemma 2: The necessity is obvious, since (9)  means 
that conditions (10) and (11) is satisfied [1,2]. 
It is su fficient to prove that con ditions (10) and (11) imply 
condition (9), i.e. it is suffici ent to prove that conditions (10) 
and (11) imply that if 1|z| > and 0z),( 1 =sB , 

then 1Re <0s . 

Let ( )s f z= be the algebraic function determined 
by ( ,z)=0B s in (9). Condition (10) implies that 0)( ≠zf  
if 1|| ≥z ; condition (11) implies that 0)(Re <zf if 1|z| =  
and ( ,z) 0B s = . Therefore, by Lemma 3, it fo llows that 

0)(Re <zf if 1|| ≥z and ( ,z) 0B s = . 

Hence,
( )

,
0 0

( ,z) 0
A

k

N MK
m

m k
k= m

B s b s z τ−

=

= ≠∑ ∑  for 

Re s 0≥ and 1|| ≥z , [0, ]kkτ ∈ τ , kτ is a fi nite constant, 

1, 2,...,k K= .          Q.E.D. 
 
Proof of Theorem 2:  We can see that the conditions (7) and 
(9) are equivalent to those of (10) and (11) of Lemma 2 [1-3]. 
Since Lemma 2 is a necessary and sufficient condition of the 
stability of two-variable polynomial ( , )B s z , and due to 
Theorem 2, the stability of ( , )B s z  is sufficient for the quasi-
polynomial with multiple delays in (4), the conditions (10) and 
(11) are sufficien t for the stability of quasi-polynomial with 
multiple delays in (4). Q.E.D. 
    The proof approaches of the above lemma and theorems are 
similar to those of [23-26], while the results of [26] are 
suitable to 2-D discrete systems only, and they cannot be 
employed to the 2-D polynomial ( ,z)B s  in (6) directly.  

Theorem 2 provides a sufficient condition for the stability 
of the qu asi-polynomial with multiple delays in (4), from 
Theorem 2  w e can obtain following corollary for networked 
systems. 
 
Corollary 1: Networked system (1) is asymptotically stable, if  

(i)   0
1

(1, )=det 0,| | 1k

K

k
k

B z z zI A A −τ

=

⎛ ⎞⎟⎜ − − ≠ ≥⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑     (12) 

(ii)  -jj
0

1

( , e )=det e 0k

K

k
k

B s sI A A ωτω

=

⎛ ⎞⎟⎜ − − ≠⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑           (13) 
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[0, ]kkτ ∈ τ , kτ is a finite constant, 1, 2,...,k K= . 
For networked systems we need  not expand the 

characteristic polynomials of the systems, we can directly test 
the stability conditions of Corollary 1 for them. 

 

IV. SOME EXAMPLES 
In this section, we provide some examples illustrating the 

application of the results of the paper. These examples cannot  
be tested by t he algorithms of [17-19], since the delays of 
networked systems in our examples are uncertain and of finite 
upper-bounds.  
 
Example 1: This example is revised from Example 1 of [20], 

here we consider n=0 [20], thus 
2

1
2

K
π⎛ ⎞= −⎜ ⎟
⎝ ⎠

, and we 

construct the networked system from the quasipolynomial of 
[20], 

2( ) ( )sB s s e Kτ−= + +                                                (14) 
We regard the quasipolynomial (13) to be the characteristic 
polynomial of t he networked system with single delay and 
analyze its stability, 

0 1( ) ( ) ( )t t tx A x A x= + −τ                                      (15) 

where 0 1

0 1 1 0
,

0 0 1K
A A

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 , [0,0.51]τ ∈  . 

From (14) and (6), we get the 2-D polynomial 
2( , ) ( )B s z s z Kτ−= + +                                             (16) 

From the condition (i) of Theorem 2 1 and (16) we have  
2(1, ) (1 ) 0,| | 1B z z K zτ−= + + ≠ ≥                           (17) 

Applying the condition (ii) of Theorem 2 we have 
j -j 2( , e ) ( e ) 0,B s s Kω ωτ= + + ≠  for all [0, 2 ]ω π∈  

and 0Re ≥s                                                                     (18) 
The real part curve of the roots of j( , e )B s ω  is shown in 

Fig.1, there is no root with the real part to be larger than 0 for 

all [0,1]
2

f
ω
π

= ∈  and [0,0.51]τ ∈ . Thus, according to 

Theorem 2, the networked system (15) is asymptotically stable.  

 Let the initial states
1

(0)
1

x
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

and 0.51τ = , 

simulating the networked system (15), we obtain the system 
states shown in Fig.2, which also verifies the system is stable. 

 
Fig.1 The real part of the roots of j( , e )B s ω in (18) for 
[0,0.51]τ∈   
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Fig.2   The system states of the networked system (15) 
 
Example 2: Consider the networked system with two interval 
delays 

0 1 1 2 2( ) ( ) ( ) ( )t t t tx A x A x A x= + −τ + −τ              (19) 

where 0

2 0
0 0.9

A
⎡ ⎤−
⎢ ⎥= ⎢ ⎥−⎣ ⎦

, 1

0.4 0
0.6 0.3

A
⎡ ⎤−
⎢ ⎥= ⎢ ⎥− −⎣ ⎦

, 

2

0.6 0
0.5 0.6

A
⎡ ⎤−
⎢ ⎥= ⎢ ⎥− −⎣ ⎦

, 1 [0,8.9]τ ∈  and 2 [0,12.2]τ ∈ . 

The characteristic polynomial of the system (19) is obtained as  

( )1 2
0 1 2( )=det e es sB s sI A A A− τ − τ− − −               (20) 

From (27) and (13), we get the 2-D polynomial 

( )1 2
0 1 2( , )=detB s z s z zI A A A−τ −τ− − −              (21) 

From the condition (i) of Corollary 1 and (30) we have  

( )1 2
0 1 2(1,z)=det 0,| | 1B z z zI A A A−τ −τ− − − ≠ ≥

                                                                                               (22) 
From the condition (ii) of Corollary 1 we have 

( )1 2-j jj
0 1 2( ,e )=det e e 0B s sI A A Aωτ − ωτω − − − ≠    (23) 

for all [0, 2 ]ω π∈ , 0Re ≥s , 1 [0,8.9]τ ∈  and 

2 [0,12.2]τ ∈ . 
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The real part c urve of the roots of 
j( , e )B s ω for 1 [0,8.9]τ ∈  and 2 [0,12.2]τ ∈ is shown in 

Fig.3, there is no root with the real part of the roots to be 

larger than 0 for all [0,1]
2

f
ω
π

= ∈ , 1 [0,8.9]τ ∈  and 

2 [0,12.2]τ ∈ . Thus, the system (19) is asymptotically 
stable.  In Fig.3, to show the real parts of the roots 

j
0 1 2(e , , )s ω τ τ depend on the delays 1τ  and 2τ , we select  

the real parts of j
0 1 2(e , , )s ω τ τ to be 

j
0 1 2[0,2 ]

max Re[ (e , , )]s ω

ω∈ π
τ τ .  

 

 
Fig.3 The real part of the roots of j( , e )B s ω  in (23) for 

1 [0,8.9]τ ∈ and 2 [0,12.2]τ ∈   
 

Let the initial states
1

(0)
1

x
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

, 1 8.9τ = and 

2 12.2τ = , simulating the networked system (19), we obtain 
the system states shown in Fi g.4, which also verifies  the 
system is stable. 

From Example 2 we can see that t hough the networked 
system (19) has two delays, the complexity of stability test is 
not very high, we ha ve no computation complexity problem 
for the stability test of t he networked system with multiple 
delays. The proposed 2-D Hurwitz-Schur stability test of 2-D 
hybrid polynomial ( , )B s z  provides a n ew approach to 
determine the stability of the networked system with multiple 
delays. 
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Fig.4   The system states of the networked system (19) 

 

V. CONCLUSIONS 
The stability conditions of networked systems with 

multiple delays derived from 2-D hybrid polynomial ( , )B s z  
are sufficient, we only consider the delays of the systems from 
zero to finite upper bound. This paper establishes the stability 
relationship between the characteristic polynomials of 
networked systems and 2-D s-z polynomials. Theorem 2 and 
Corollary 1 are b ased on the stability of 2-D s-z polynomials. 
The proofs and applications of the test th eorems for th e 
networked systems with multiple delays are provided.  
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