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, Daniel R. Gonçalves2, Stanley W. F. Rezende1

∗

Jose dos Reis V. Moura Jr2 and Roberto M. Finzi Neto1

1Post-Graduate Program - Mechanical Engineering, Federal University of Uberlandia,
Brazil. e-mail: paulo elias carneiro@ufcat.edu.br; stanley washington@ufu.br;
finzi@ufu.br
2Post-Graduate Program - Modeling and Optimization, Federal University of Catalão,
Brazil. e-mail: danielresendeg@gmail.com; zereis@ufcat.edu.br
∗Corresponding author

Abstract

In Impedance-based Structural Health Monitoring Systems, it is essential to
identify the location of possible damage so that corrective measures can be taken
promptly. Several approaches have been developed to predict the location of dam-
age, including the one based on indicator kriging. This chapter illustrates the com-
putational packages in Python for carrying out estimates by kriging methods. A case
study of the location of structural damage in the center of an aluminum plate using
indicator kriging is presented. They are detailed, sequentially, the necessary steps,
and discussing each one. The results obtained with the case study showed that it
was possible to map the place with the highest probability of occurrence of damage,
which proved to be consistent with the actual position of the same, which highlights
the ability of the proposed approach to predict the location of structural damage. In
addition, perspectives regarding future research involving the use of the technique
are discussed.

Keywords: Impedance-based structural health monitoring; Kriging methods; Indicator kriging;
Damage location

1 Introduction

The electromechanical impedance technique has been vastly applied to the monitoring of struc-
tures due to its low cost - concerning other approaches - and its characteristic of being a non-
destructive evaluation (NDE) method (Giurgiutiu [2014]). Further, the method can access the
structure’s conditions at relatively high frequencies (usually between 30 kHz and 400 kHz), which
reduces the environment’s interferences, allowing the structure’s monitoring at small scales, such
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as cracks, delamination, and disbonds, not detectable by other methods (Bhalla and Soh [2012];
Zagrai and Giurgiutiu [2009]).

Post-processed information obtained by ISHM refers to damage metric data (e.g., RMSD and
CCD indexes), which can indicate the presence of damage in the structure by comparing the elec-
trical impedance signatures at any moment in time and at the initial (pristine) condition of the
structure (Giurgiutiu [2014]; Giurgiutiu and Rogers [1998]). As each damage metric data is re-
lated to a specific actuator, it’s necessary to interpolate all data collected, each assigned to a point
in the space (actuator position), to identify the damage location.

The works of Kravolec et al. [2018] and Cherrier et al. [2013] evidenced the existence of a
correlation between the electrical impedance signatures and the distance from the damage, which
suggests the presence of spatial correlation between the damage metric data arranged in the form
of a network. Results derived from the application of kriging methods (Gonçalves et al. [2021];
Gonçalves et al. [2020]) for the interpolation of RSMD values in an aluminum plate revealed a
spatial correlation between these, allowing the identification of the damage location, especially
when using the indicator kriging method. Despite the positive results achieved, more research on
this approach is necessary, which can allow several new possibilities.

This chapter presents the theoretical concepts related to indicator kriging for applications in
structural health monitoring. First, concepts of ISHM and kriging are exposed, followed by com-
putational routines on Python packages for estimations based on kriging methods. Finally, a case
study is presented regarding the location of damage from indicator kriging, where the steps in-
volved are sequentially detailed, accompanied by source codes in Python language.

2 Fundamentals of ISHM and Kriging

2.1 Fundamentals of ISHM

There are several techniques for monitoring the occurrence and propagation of structural dam-
age to increase the useful life, improve the performance of structures/equipment and reduce costs
(Park et al. [2003]). Among the SHM techniques, there is the Electromechanical Impedance-based
Structural Health Monitoring (EMI-SHM), which is based on the electromechanical coupling that
results from the bonding of piezoelectric transducers to the structure or equipment that will be
monitored, keeping the impedance function defined, which depends on the mechanical charac-
teristics of the transducer and structure to be monitored (Lin and Giurgiutiu [2006]; Park et al.
[2003]).

In the EMI-SHM technique, PZT transducers are usually excited by a sinusoidal waveform
with an amplitude of approximately 1V RMS (effective voltage) and a frequency range of 10 to
250 kHz (Raju [1997]), or even as high as 1,000 kHz, depending on the structure and type of
application (Giurgiutiu et al. [1999]). The lower frequency band covers a larger detection area,
while the higher frequency band can determine the location of damage (Sun et al. [1995]). Among
the advantages of the high-frequency response is that the wavelength of the signal applied to the
structure is short enough to detect even small initial cracks. Such cracks can expand and cause
serious failures depending on the structure (Park et al. [2003]).

Electromechanical models were formulated to describe the relationship between the structure
and the piezoelectric transducer. Liang et al. [1994] define the electrical impedance of the trans-
ducer ZE(ω) associated with the mechanical impedance of the structure Zs(ω) by Eq. 1.

ZE(ω) =
1

jωτ

(
ϵT33 −

Zs(ω)

Zs(ω) + Zp(ω)
d23XY E

XX

)−1

(1)

where Zp(ω) corresponds to the mechanical impedance of the transducer; ω is the angular
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frequency; τ , a geometric constant; ϵT33, the dielectric constant for constant mechanical stress (T );
Y E
XX , Young’s modulus for a constant electric field (E); d23X , a dielectric constant; and j, an

imaginary unit.
In the one degree of freedom model presented by Liang et al. [1994], the influence of the

adhesive layer (glue) between the transducer and the structure is not considered. Thus, the PZT
patch is excited at a high frequency and returns the impedance curve of the structure studied.
Changes in the mechanical impedance of the structure due to a failure lead to a modification of the
signal (electrical impedance) emitted by the PZT patches coupled or embedded in the structure,
whose signal is measured within a frequency range. Changes in structural conditions are then
identified by comparing the impedance signatures before and after the fault’s occurrence (Maruo
et al. [2015]; Bhalla and Soh [2012]; Baptista and Vieira Filho [2010]; Zagrai and Giurgiutiu
[2009]; Peairs et al. [2007b]; Peairs et al. [2007a]).

The measurement of the difference between the electrical impedance signals before and after
the occurrence of changes in the structure’s status is done through some indexes, among which we
have the Root Mean Square Deviation-RMSD (Eq. 2) and the Correlation Coefficient Deviation-
CCD (Eq. 3).

The RMSD (Eq. 2) measures the similarity of impedance attributed to the same frequency and
is supported by the Euclidean standard (Giurgiutiu [2014]; Giurgiutiu and Rogers [1998]). This
indicator is based on the comparison between the impedance values before the damage, that is,
in the pristine condition (Z0

E(k)), whose signal is also called the baseline, and those obtained at
some point in the future (ZE(k)), all measured at several k points in the frequency domain, whose
range varies from ωI (initial frequency) to ωF (final frequency).

RMSD =

√√√√∑ωF
k=ωI

[
ZE(k)− Z0

E(k)
]2∑ωF

k=ωI

[
Z0
E(k)

]2 (2)

Unlike the RMSD, which measures the average distance/difference between the impedance
curves, the CCD (Eq. 3) analyzes the impedance curves globally, based on the correlation coeffi-
cient (Marqui et al. [2008]).

CCD = 1− 1

n

n∑
i=1

((
Re (Zbase ,i)− Re

(
Z−

base

)) (
Re (ZFIS,i)− Re

(
Z−
FIS

))
SFISSbase

)
(3)

In Eq. 3, n is the number of frequency-domain values, Re(Z(base,i)) is the real part of
the impedance signal in the pristine condition, Re(Zbase) is the average of the real part of the
impedance signal in the pristine status, Re(Z(FIS,i)) is the real part of the PZT patch impedance
signal after damage, Re(ZFIS) is the average of the real part of the PZT patch impedance signal
after damage, SFIS the standard deviation of the real part of the PZT impedance signal that repre-
sents the damage and Sbase is the standard deviation of the real part of the PZT impedance signal
that represents the signal in the intact condition.

An impedance analyzer such as the HP4194A is the simplest way to determine the electrome-
chanical impedance of smart structures (structures containing PZT transducers). However, the
equipment cost is approximately US$ 40,000 and weighs about 30 kg. There are other options
with limited functions that cost less than $2,000. However, they are still bulky (weighing several
pounds). As a consequence, researchers have been looking for alternative ways to perform this
task (Maruo et al. [2015]).
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2.2 Semivariogram

Estimating unsampled points and regions using kriging methods are based on the spatial correla-
tion of the analyzed variable. The spatial continuity means that sample (or input) data close to each
other have similar values attributed to them, whose difference increases as the distance between
them becomes higher (Revuelta [2018]; Chilès and Delfiner [2012]). In this sense, closer sample
(or input data) points have a more significant correlation with each other than those more distant -
spatially - among each other.

The quantification of the spatial continuity is done using the semivariogram function (γ(h)),
defined in the Eq. 4, which calculates the mean quadratic difference between the sample (or input)
point pairs z(xi), located at a point xi of the - stationary - domain being analyzed, and z(xi + h),
located at the xi + h, distant h from the first point, where h refers to the distance vector between
the data being compared (Journel and Huijbregts [1978]). The term N(h) represents the number
of the sample (or input) data pairs in the direction under analysis.

γ(h) =
1

2N(h)

N(h)∑
i=1

(z(xi)− z(xi + h))2 (4)

The calculation of the semivariogram for several classes of distances in a specific spatial di-
rection provides an inventory of the continuity in this one in the form of a graphic (experimental
semivariogram) comparing the semivariance values (γ(h)) and their respective classes of distances
(Figure 1). The growth of the function represents the progressive loss of spatial continuity between
the compared sample (or input) pairs as the distance between them increases (Abzalov [2016];
Chilès and Delfiner [2012]; Sinclair and Blackwell [2002]). The total loss of continuity between
the input points is evidenced at the point from which the growth of the function stops, and the next
ones stay oscillating, normally around the variance a priori, which recurrently corresponds to the
variance of the variable being analyzed within the domain.
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Figure 1: Experimental semivariogram with its respective theoretical fitting
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Mathematical functions must adjust experimental semivariograms for their use in the estima-
tion processes (kriging equations). The justifications for this encompass several aspects, whose
arguments and discussions can be found in Journel and Huijbregts [1978], Rossi and Deutsch
[2014] and Revuelta [2018]. A semivariogram model can be constituted of one or more mathe-
matical functions, depending on the shape of the experimental semivariogram (Kitanidis [1997]).
Some mathematical functions for semivariogram fitting include the following (Figure 2): Spheri-
cal, exponential, and Gaussian, which are characterized to have a sill (semivariance value) limiting
the increase of the function.
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Figure 2: Graphical representation of the spherical, exponential, and Gaussian semi-
variogram models. All of them are represented using the same parameters.

Three parameters define the semivariogram models (Figure 3): Nugget Effect, Sill, and Range.
The first one is a chaotic or unstructured variance. It represents a variability that occurs at a scale
lower than the spacing between the sample (or input) data and, therefore, is not mapped by the
semivariogram and is also due to sampling errors. The Sill corresponds to the variance of the
variable in the direction of the vector h, and the Range is the distance from which there’s no
more spatial correlation between the pairs of values in the direction being mapped (Journel and
Huijbregts [1978]; Hustrulid et al. [2013]; Rossi and Deutsch [2014]).

Calculating the semivariograms in several directions in the analyzed - and stationary - do-
main quantifies the spatial continuity behavior of the variable under analysis. In this context,
directional semivariograms will frequently show different spatial continuities in the function of
the spatial direction (vector h), which will indicate the presence of a direction endowed with a
greater homogeneity between the values along this one and another one with a lower homogene-
ity (higher variability). Cases in which the semivariograms’ shape are a function of the spatial
direction corresponds to the occurrence of anisotropy, among them, the most common is the ge-
ometric anisotropy, in which the range varies in function of the spatial direction (vector h), and
the sill remains constant (Figure 4) (Armstrong [1998]; Isaaks and Srivastava [1989]; Journel and
Huijbregts [1978]).
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Figure 3: Example of a spherical semivariogram model with its parameters.
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Figure 4: Semivariograms showing a phenomenon with geometric anisotropy.

The possibility to map the spatial continuity of a variable (e.g., damage index) using semivari-
ograms can help identify possible preferential directions of structural damage propagation, which
will be shown in Section 4, where there is an occurrence of geometric anisotropy in indicator
variables obtained from RMSD-based damage index values.
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The information obtained from semivariograms allows the complete characterization of the
variable’s spatial continuity and is used for estimating its values at the unsampled locations by
kriging methods.

2.2.1 Kriging Methods

The term kriging covers a wide variety of estimation methods, characterized to be exact interpo-
lators, whose mathematical formulations of the main types can be obtained in the works of Rossi
and Deutsch [2014], Chilès and Delfiner [2012], Sinclair and Blackwell [2002], Kitanidis [1997]
and Journel and Huijbregts [1978].

Among the kriging methods, there is the ordinary kriging one, which is a local estimation
method, where the estimation of a point at an unsampled location (Z∗

KO(x0)) is obtained by a linear
combination (Eq. 5) of n sample (or input) values Z(xi) contained in the search neighborhood,
where the weights λi reflects the spatial correlation between the unsampled point (or block) and
the actual (or input) values within the search neighborhood, and between the sample (or input)
values among each other contained in the search neighborhood (Yamamoto and Landim [2013]).

Z∗
KO =

n∑
i=1

λiZ(xi) (5)

The weights of the linear combination shown in the Eq. 5 are obtained through the solution
of the ordinary kriging’s system of equations (Eq. 6), where it’s intended to get the combination
of weights in such a way that the kriging variance is minimized, considering the aspects of spatial
continuity of the variable under estimation, being these, reproduced in the semivariogram values
between sample (or input) values in the xi and xj locations (γ(xi − xj)), and the semivariogram
values between the point to be estimated at the x0 location and the input data at the xi locations
(γ(xi − x0)). Also, a restriction, which refers to the need for the sum of the weights to be unitary,
is imposed on the system to obtain unbiased estimates, called an unbiased constraint. This system
can be expressed in the matrix form (Eq. 7), from which the optimal weights are calculated
(Yamamoto and Landim [2013]).{ ∑n

j=1 λjγ(xi − xj)− µ = γ(xi − x0) for i = 1, . . . , n∑n
j=1 λj = 1

(6)


λ1

λ2
...
λn

−µ

 =


γ(x1 − x1) γ(x1 − x2) . . . γ(x1 − xn) 1
γ(x2 − x1) γ(x2 − x2) . . . γ(x2 − xn) 1

...
... . . .

...
...

γ(xn − x1) γ(xn − x2) . . . γ(xn − xn) 1
1 1 . . . 1 0


−1

×


γ(x0 − x1)
γ(x0 − x2)

...
γ(x0 − xn)

1

 (7)

In addition to the variable’s estimated value at the unsampled location x0, the kriging methods
are capable of providing the estimation variance, which, in the case of the ordinary kriging method,
is given by the Eq. 8, where µ is the Lagrange parameter, and n refers to the number of samples
(input data) used for the estimation at an unsampled location.

σ2
KO =

n∑
i=1

λiγ(xi − x0) + µ (8)

The ordinary kriging estimator can be used as the base for estimation of indicator variables,
characterized to be binary, the situation in which there is the so-called indicator kriging, being a
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non-parametric method, in such a way that the statistical distribution of the variable doesn’t re-
strict its application under estimation (Rossi and Deutsch [2014]; Revuelta [2018]). The indicator
kriging performs the estimation of binary variables, whose values are determined according to
a specific criteria, as shown in the Eq. 9, where, from an original distribution, are indicated K
thresholds zk, and for each of them, are created indicator variables, coding the values according to
the value’s position of the original variable (Z(x)) relative to the specified threshold zk (Eq. 9).

I(x, zk) =

{
1, if Z(x) ≤ zk

0, otherwise
(9)

In the case of using the ordinary kriging as the interpolator for the estimation of indicator
variables at the unsampled locations, the estimated values I(x0) at each x0 location are calculated
as a linear combination (Eq. 10) of the n sample (or input) data I(xi) located at the xi points and
contained in the search neighborhood, generally with an elliptical shape, whose weights λi reflects
the spatial correlation between the estimated point and the sample values within the search neigh-
borhood, and between the sample (or input) values among each other (Yamamoto and Landim
[2013]).

I(x0) =
n∑

i=1

λiI(xi) (10)

The estimated indicator variable values by ordinary kriging are determined in such a way that
the variance of the estimation error is minimized, considering the unbiased constraint (average of
the estimation error is zero), resulting in optimal weights-based estimations, which minimizes the
estimation error variance (Isaaks and Srivastava [1989]).

3 Python packages applied to Kriging

The geostatistical methods and tools (e.g., kriging) have been implemented in several program-
ming languages, including Python. Among the packages used to carry out kriging-based estimates,
there is the Geostatspy (Pyrcz et al. [2021]), whose package is characterized to be reimplementa-
tions of the functionalities of the Geostatistics Software Library (GSLIB) in the Python language.
The GSLIB is a set of pretty robust codes for building spatial modeling workflows. Therefore,
this package offers the opportunity to create projects of 2-D spatial modeling in Python without
the necessity of trust in the GSLIB’s compiled Fortran code, together with the use of datasets
that moves between the GSLIB’s Geo-EAS format to Pandas’ dataframes and grids to NumPy’s
n-dimensional arrays.

The operation of the Geostatspy package requires some dependencies, which includes the
following libraries: (1) NumPy (Harris et al. [2020]), for n-dimensional arrays; (2) Pandas (McK-
inney [2010]), for DataFrames; (3) numpy.linalg, for linear algebra; (4) numba, for numerical
acceleration; (5) scipy, for quickly nearest neighbor search, and; (6) Matplotlib (Hunter [2007]),
for plotting.

The Geostatspy package contains geostatspy.geostats and geostatspy.GSLIB. The first includes
GSLIB functions rewritten in Python, including all semivariograms, distribution transformations,
and estimation and simulation-based methods. The second consists of the reimplementations of
the GSLIB visualizations and low-tech wrappers of numerical methods, which require access to
the GSLIB executables.

The first part, geostatspy.geostats, contains numerical methods, for example, the ik2d function
(GSLIB’s ik3d program implemented for indicator kriging estimation of 2-D data), correct trend
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(fix the order relationships of an indicator-based trend model), and backtr (GSLIB’s backtr pro-
gram for back-transform a normal-shape distribution to an original one). These and other functions
are presented and described in the Table 1.

Table 1: Some functions of the geostatspy.geostats part of the Geostatspy package

Function Application
correct trend fix the order relationships of an indicator-based trend model

nscore Transform an original distribution to a normal-shape one
backtr Back-transform a normal-shape distribution to the original one
declus Execution of sample’s declustering (cell-based declustering)
gam Calculation of semivariograms basing on regularly spaced 2-D data
gamv Calculation of semivariograms basing on irregularly spaced 2-D data

varmapv Semivariogram map of irregularly spaced 2-D data
vmodel Semivariogram fitting

kb2d Simple and/or ordinary kriging for 2-D data
ik2d Indicator kriging for 2-D data

The second part, geostatspy.GSLIB, contains utility functions that support moves between
data tables: DataFrames, n-dimensional arrays, Geo-EAS, and grid data. It also contains data
transformation functions, spatial continuity, spatial model re-sampling, and visualization using
Matplotlib. Some functions are showed and described in the Table A1, Appendix A.

4 Damage location prediction using Indicator Kriging – A Case Study

Herein it’s considered an aluminum plate of 100 cm x 100 cm dimensions containing 100 RMSD-
based damage metric values arranged in a regular mesh of 9.09 cm x 9.09 cm, with a known
damage located at the plate’s center. For the development of the case study it was used the python
packages geostatspy (Pyrcz et al. [2021]), os-sys (Labots [2019]), NumPy (Harris et al. [2020]),
Pandas (McKinney [2010]), pygeostat (Deutsch et al. [2020]), and Matplotlib (Hunter [2007]),
which were imported according the Code 1.

Code 1: Source code for import the Python packages used in this case study
1 import geostatspy.GSLIB as GSLIB
2 import geostatspy.geostats as geostats
3 import os
4 import numpy as np
5 import pandas as pd
6 import pygeostat as gs
7 import matplotlib.pyplot as plt
8 from matplotlib import gridspec
9 %matplotlib inline

In the sequence, it was selected the working directory using the chdir function of the os-sys
package. The data, in the CSV format, was then imported using the Pandas’ read csv function.
Subsequently, it was necessary to plot the RMSD values, which was done using the Code 2,
resulting in the Figure 5, where one can observe the occurrence of high RMSD values near the
damage, with those decreasing gradually from center to the plate’s border.
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Code 2: Source code for import the dataset and plot the RMSD values in X-Y plane
1 os.chdir(’C:\\YOUR_DATABASE_PATH’)
2 df=pd.read_csv(’dataset.csv’, header=0, sep=’;’)
3 xmin = 0.0; xmax = 100.0
4 ymin = 0.0; ymax = 100.0
5 xsiz = 4; ysiz = 4
6 nx = 25; ny = 25
7 xmn = 2; ymn = 2
8 cmap = plt.cm.viridis
9 GSLIB.locmap_st(df,’X’,’Y’,’PDANO’,xmin,xmax,ymin,ymax,0,5,’Damage

metric values’,’X (cm)’,’Y (cm)’,’Damage metric values’,cmap)
10 plt.savefig(’map_points.PDF’, dpi=800, bbox_inches=’tight’)
11 plt.show()
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Figure 5: Localization map of the PZT patches in the plate

In the Code 2, the directory was defined in line 1, and the dataset, imported using the read -
csv function, shown in line 2, where were added the file’s name, the number of the header line,
and the column’s delimiter. Between lines 3 and 7 was defined the followed variables: minimum
coordinate in the X direction (xmin); maximum coordinate in the X direction (xmax), minimum
coordinate in Y (ymin), maximum coordinate in Y (ymax), cell size in the X direction (xsiz), cell
size in the Y direction (ysiz), number of cells in X (nx), number of cells in Y (ny), origin of the
grid in X (xmn), and origin of the grid in Y (ymn). In the sequence (line 8), the color palette
was exposed. Then, using the geostatspy’s function named locmap st (line 9), the points (PZTs
location) were plotted according to the parameters defined previously.

The statistical analysis of the RSMD values was done by means of boxplot (Figure 6), his-
togram (Figure 6), and descriptive statistical indicators (Table 2), which were obtained using the
Code 3 (boxplot and histogram) and the Code 4 (descriptive statistics). According to the results
(Figure 6 and Table 2), one can observe a highly asymmetric, positive skewed distribution, with
only 25% of the data higher than 1.9, with presence of outliers, all of them higher than 4.0.
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Figure 6: Boxplot and histogram of the RMSD values

Table 2: Descriptive statistics of the damage metric values.

Count Min Q1 Median Mean Q3 Max STDEV Variance Skewness
100 0.000 0.000 0.600 1.199 1.900 5.000 1.414 1.998 1.151

Code 3: Source code to get the boxplot and histogram of the RSMD values
1 fig=plt.figure(figsize=(10,5))
2 gs=gridspec.GridSpec(1,2, width_ratios=[1.3,3])
3

4 ax1=plt.subplot(gs[0])
5 meanpointprops=dict(marker=’D’, markeredgecolor=’black’,

markerfacecolor=’firebrick’)
6 flier_props=dict(marker=’x’, markerfacecolor=’magenta’, markeredgecolor

=’steelblue’)
7 box_props=dict(color=’steelblue’)
8 whisker_props=dict(color=’steelblue’)
9 median_props=dict(color=’red’)

10 ax1.boxplot(df[’PDANO’], showmeans=True, meanprops=meanpointprops,
flierprops=flier_props, boxprops=box_props, medianprops=
median_props, whiskerprops=whisker_props)

11 ax1.tick_params(axis=’x’, labelsize=0)
12 ax1.tick_params(axis=’y’, labelsize=12)
13 ax1.set_ylabel(’Damage metric values’, fontsize=12)
14

15 ax2=plt.subplot(gs[1])
16 ax2.hist(df[’PDANO’], density=True, facecolor=’white’, edgecolor=’

steelblue’, linewidth=1)
17 ax2.set_xlabel(’Damage metric values’, fontsize=12)
18 ax2.set_ylabel(’Relative frequency’, fontsize=12)
19 ax2.tick_params(axis=’x’, labelsize=12)
20 ax2.tick_params(axis=’y’, labelsize=12)
21

22 plt.subplots_adjust(wspace=0.2, hspace=0.1)
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23 fig.tight_layout()
24 plt.savefig(’statistic_analysis.pdf’, dpi=800, bbox_inches=’tight’)
25 plt.show()

Code 4: Source code for obtaining the statistical indicators of the results showed in
Table 2

1 print(df[’PDANO’].describe())
2 print(df[’PDANO’].skew(skipna=True))
3 print(df[’PDANO’].var())

In the Code 3, initially was defined the figure’s size (line 1), and then the specifications of
the grid, containing the boxplot and the histogram, using the GridSpec function (line 2). In the
sequence (line 4), it was determined the position of the boxplot in the subplot grid (first position),
followed by the boxplot properties relative to the mean (line 5), the outliers (line 6), the boxes
(line 7), the whiskers (line 8) and median (line 9), which were used to make the boxplot (line
10), whose general formatting features were defined in the lines 11, 12 and 13. In line 15, it was
defined the position of the histogram in the subplot grid (second position) and then the histogram
(line 16), whose formatting features were stated between lines 17 and 20. Finally, the horizontal
and vertical spacing between the plots was established in line 22, followed by the definition of the
tight layout (line 23), the savefig function to save the figure (line 24), and a command line to show
the plots (line 25).

The Code 4 shows the source code for obtaining the descriptive statistics of the RMSD values.
In line 1 was used the describe function, which returned the following indicators: number of
values; mean; standard deviation; minimum and maximum value, and; the first, second, and third
quartiles. The skewness was gotten using the skew function (line 2) and the sample variance, the
var function (line 3).

Based on the statistical information (Figure 6), where one can observe the occurrence of out-
liers, all of them higher than 4.0, it was done a localization map with only the values higher than
4.0 (Figure 7), obtained using the Code 5.
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Figure 7: Localization map of the RMSD values higher than 4.0
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Table 3: Thresholds and their respective indicator variables.

Threshold Indicator Variable
1 IND0
2 IND1
3 IND2
4 IND3

Code 5: Source code for make the localization map of the RMSD values higher than
4.0

1 df_thr4=df[df[’PDANO’]>4]
2 df_thr4
3 xmin = 0.0; xmax = 100.0
4 ymin = 0.0; ymax = 100.0
5 xsiz = 4; ysiz = 4
6 nx = 25; ny = 25
7 xmn = 2; ymn = 2
8 cmap = plt.cm.viridis
9 GSLIB.locmap_st(df_thr4,’X’,’Y’,’PDANO’,xmin,xmax,ymin,ymax,0,5,’Damage

metric values’,’X (cm)’,’Y (cm)’,’Damage metric values’,cmap)
10 plt.savefig(’localization_map_thr_4.pdf’, dpi=800, bbox_inches=’tight’)
11 plt.show()

In the Code 5, initially (line 1) it was defined a new dataset, containing only the RMSD values
higher than 4.0. In the sequence, between lines 3 and 8, it was defined the plot’s parameters:
minimum (xmin) and maximum (xmax) coordinates in the X direction (line 3); minimum (ymin)
and maximum (ymax) coordinates in the Y direction (line 4); cell sizes in the X (xsiz) and Y (ysiz)
directions (line 5); number of cells in the X (nx) and Y (ny) directions (line 6); origin of the grid
in the X (xmn) and Y (ymn) directions (line 7), and; color palette to be used (line 8). Finally, it
was used the locmap st function of the Geostatspy package in the line 9 to plot the data, whose
resulting figure was saved using the savefig function (line 10).

Figure 7 shows an occurrence of values higher than 4.0 near the plate’s center, where the
known damage is located. Based on this, four thresholds were selected, 1, 2, 3, and 4, to map the
occurrence of these values along the plate. The latter threshold (4.0) is particularly interesting,
once it’s related to the damage position. From the established thresholds, were created four indi-
cator variables, each of them assigned to a specific threshold (Table 3), whose binary values were
defined according to Eq. 9, implemented using the Code 6, and indicating the probability below a
specific threshold.

Code 6: Source code for defining the indicator variables related to the stablished
thresholds

1 thrs=[1,2,3,4]
2 for i in range(1,5):
3 cont=i
4 df["IND"+str(cont-1)]=np.zeros(len(df[’PDANO’]))
5 df["IND"+str(cont-1)]=np.where(df[’PDANO’]<=thrs[cont-1],1,0)
6 df

The Code 6 started with defining the threshold values (line 1). Then, a loop (line 2) was used
for creating the indicator variables, all of them assuming initially zero values (line 4) and with
the same length of the variable containing the RMSD values. In the sequence, it was used the
where function of the NumPy package to apply the criterion defined in the Eq. 9, resulting in the
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probabilities below the respective thresholds.
To calculate the semivariograms, it was necessary, initially, to obtain the variance of each

indicator variable (Table 4); once these values are, in most cases, the variance a priori in the semi-
variogram plot. This step was done with the Code 7, based on the standard deviation calculation
and then the variance.

Table 4: Sample variance of each indicator variable.

Indicator Variable Sample Variance
IND0 0.2356
IND1 0.1824
IND2 0.1131
IND3 0.0384

Code 7: Source code used for calculating the variance of each indicator variable
1 var = np.zeros(4)
2 for i in range(4):
3 cont = i
4 x = "IND"+str(cont)
5 var[i] = np.std(df[x])
6 var[i] = (var[i])**2
7 print(var[i])

According to Code 7, firstly it was created a variable named var (line 1) with a length equal to
4 to receive the variance value of each indicator variable. A for loop was then applied in line 2 to
calculate all variances. Inside the loop, a variable named cont was defined (line 3), being equal to
i, and in the sequence, it was defined a variable named x (line 4), which was equal to the respective
indicator variable. Afterward, each value of the var variable was defined as the standard deviation
of the respective indicator variable (line 5). Finally, these values were squared, resulting in the
respective variances, shown in Table 4.

The results obtained for the indicator variables’ sample variance showed that the highest vari-
ance is related to the indicator variable attributed to the threshold equal to 1, and the lowest, with
the threshold equal to 4. This was expected once 62% of the samples were equal or lower than
1.0 (38% higher than 1.0), and 96% of the samples were equal or lower than 4 (only 4% higher
than 4), indicating that the indicator variable related to the threshold equal to 1 would have a vari-
ability much higher than the other ones. This also means a spatial variability much higher for the
indicator variable attributed to the threshold equal to 1 about the others. This characteristic would
be manifested in the semivariogram model used to fit the experimental semivariograms in the next
step.

The calculating of the experimental semivariograms was done using the Geostatspy’s gamv
function (see Section 3), which calculates the semivariogram for irregularly spaced data (general
case). Firstly, an example of the calculation of the semivariogram for the IND0 variable, related
to the threshold equal to 1.0, in the North-South direction (Azimuth equal to 0°), along with its
variographic fitting. The calculation and fitting of this semivariogram were done using the Code
8, resulting in the semivariogram shown in Figure 8.
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Code 8: Source code for calculating the experimental semivariogram for the IND0
variable in the North-South direction with its fitting by a theoretical model

1 azi=0
2 lag_dist=9.09
3 lagtol=2
4 nlag=8
5 bandh=10
6 atol=10
7 isill=var[0]
8 tmin=-1.0e21
9 tmax=1.0e21

10 lag0, por_gamma0, por_npair0 = geostats.gamv(df,"X","Y","IND0",tmin,
tmax,lag_dist,lagtol,nlag,azi,atol,bandh,isill)

11 plt.plot(lag0[2:-1], por_gamma0[2:-1], color=’darkblue’, marker=’o’,
linestyle=’dashed’,linewidth=1, markersize=5,label = ’Experimental
Semivariogram’)

12 plt.xlim(0,80)
13 plt.ylim(0,0.4)
14 plt.plot([0,100],[var[0],var[0]], color=’#238A8DFF’, linewidth=1,

linestyle=’dashed’, label=’Variance a priori’)
15

16 nugg=0.02
17 nst=1
18 it11=1
19 cc11=var[0]-nugg
20 azi1=0
21 hmaj11=52
22 hmin11=52
23 nlag1=160
24 xlag=0.5
25 vario_IND0=GSLIB.make_variogram(nugg,nst,it11,cc11,azi1,hmaj11,hmin11)
26 index_IND0_azi0, h_IND0_azi0, gam_IND0_azi0, cov_IND0_azi0,

ro_IND0_azi0 = geostats.vmodel(nlag1,xlag,azi1,vario_IND0)
27 plt.plot(h_IND0_azi0,gam_IND0_azi0, color=’darkblue’, label=’

Theoretical Fitting (spherical model)’)
28 plt.xlabel(’Distance (cm)’, fontsize=10)
29 plt.ylabel(’Semivariance’, fontsize=10)
30

31 plt.legend(fontsize=12, loc=’upper left’)
32 plt.savefig(’IND0_semivariogram_az0.pdf’, dpi=800, bbox_inches=’tight’)
33 plt.show()

The Code 8 starts with the definition of the parameters for calculation of the experimental
semivariogram, which were: azimuth direction (line 1); lag separation distance (line 2), usually
equal to the lowest spacing between sample pairs (in a regular grid, similar to the sample spacing);
lag tolerance (line 3), which should be lower than 50% of the lag separation value; number of lags
in the direction (line 4), being equal to the number of lags to cover at least the half of the field being
analyzed; horizontal bandwidth (line 5), which can be the sample spacing in the perpendicular
direction; angular tolerance (line 6), being lower than 90°, once angular tolerance equal to 90°
results in the unidirectional semivariogram; sill of the semivariogram (line 7), usually equal to the
variance a priori; the minimum value to be considered (line 8), in such a way that values lower
than the minimum are ignored, and; the maximum value to be considered (line 9), in such a way
that values higher than the maximum are ignored in the semivariogram calculation.
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Figure 8: Experimental and theoretical fitting of the semivariogram of the IND0
variable in the North-South direction (Azimuth equal to 0°)

Based on the parameters defined between lines 1 and 9 of the Code 8, the experimental semi-
variogram was calculated using Geostatspy’s gamv function in line 10, resulting in three variables:
classes of distances (lag0 variable), semivariance values (por gamma0 variable), and the number
of pairs (por npair0 variable) used of obtaining each point of the experimental semivariogram.
In the sequence, the semivariance and their respective classes of distances were plotted (line 11)
using the plot function, where only the semivariance values were higher than zero using a filter.
Subsequently, the limits of the plot (lines 12 and 13) were plotted, using line 14, the variance a
priori (normally the semivariogram’s sill) together with the experimental semivariogram.

The experimental semivariogram needs to be fitted by theoretical models to firstly identify the
preferential directions of continuity, which would be the directions of highest and lowest range
values, and then; provide spatial continuity information (based on such preferential directions) for
the kriging equations’ solving (see Section 2.2.1), resulting in the kriging estimates.

The parameters of the semivariogram’s fitting were defined between the lines 16 and 24 of the
Code 8, which were: (1) Nugget Effect (variable nugg in the line 16), which approximately refers
to the interception in the Y axis; (2) position of the nested structure (nst in the line 17), in this case,
it’s the first nested structure; (3) code for the model type (it11 in the line 18), which can be 1, 2, 3,
4 or 5 for spherical, exponential, Gaussian, Power law, or Cosine hole effect models, respectively;
(4) contribution of the structure for the semivariogram’s sill (cc11 in the line 19), which was, in
this case, the sill minus the nugget effect; (5) azimuth direction of the semivariogram’s major axis
(azi1 in the line 20), in this case, 0°; (6) range of the structure in the major direction (hmaj11 in
line 21); (7) range of the structure in the minor direction (hmin11 in the line 22); (8) number of
lags (nlag1 in the line 23), and; (9) lag separation, defined in the variable xlag, line 24.

Based on the aforementioned parameters, it was obtained the semivariogram model by means
of the make variogram function, described in line 25, whose model was attributed to a variable
named vario IND0. To determine the full information for plotting the semivariogram’s model, the
variable vario IND0 was used in the vmodel function (line 26), resulting, among others, in the
classes of distances (variable h IND0 azi0 in line 27) and the theoretical semivariogram values
(variable gam IND0 azi0 in line 27), which were used for the semivariogram model plotting (line
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27). The resulting figure was, then, saved in the PDF format using Matplotlib’s savefig function
(line 32).

Based on the steps for semivariogram calculation, it was obtained experimental semivari-
ograms for several directions for all indicator variables in the form of a report with the plots.
This was done using Code 9, in such used loops, automating the semivariogram calculation, and
filtering the results obtained in such a way to plot only those that showed a spatial continuity.

Code 9: Source code for obtain the experimental semivariogram of all indicator
variables and plotting only those ones which demonstrates a spatial continuity

1 lag_dist = np.zeros(4)
2 azi = [0,30,60,90,120]
3 color = [’red’,’green’,’pink’,’darkblue’,’black’]
4 lag = [np.zeros(1)]*20
5 por_gamma = [np.zeros(1)]*20
6 por_npair = [np.zeros(1)]*20
7 tmin = -1.0e21; tmax = 1.0e21;
8 lag_tol = 1; nlag = 8; bandh = 10; atol = 10;
9

10 k = 0
11 for i in range(4):
12 cont = i
13 ind = "IND"+str(cont)
14 plt.figure(figsize=(7, 4))
15 plt.xlabel(r’Lag Distance $\bf(h)$, (cm)’)
16 plt.ylabel(r’$\gamma \bf(h)$’)
17 plt.title(’Variogram ’+ind+’ 10x10’)
18 plt.plot([0,2000],[var[i],var[i]],color = ’#238A8DFF’,linewidth=1,

linestyle=’dashed’)
19 plt.xlim(0,80)
20 plt.ylim(0,0.42)
21 for j in range(0,5):
22 lag_dist[i] = 9.09; azi[j]; isill = var[i]
23 lag0, por_gamma0, por_npair0 = geostats.gamv(df,"X","Y",ind,

tmin,tmax,lag_dist[i],lag_tol,nlag,azi[j],atol,bandh,isill)
24 lag[k] = lag0; por_gamma[k] = por_gamma0; por_npair[k] =

por_npair0;
25 filtro = lag[k] != 0; filtro2 = por_gamma[k]!= 0;
26 aux1 = lag[k][filtro]; aux2 = por_gamma[k][filtro2]
27 if len(aux1)==len(aux2):
28 lag[k] = aux1;por_gamma[k] = aux2
29 if len(lag[k])>2:
30 plt.plot(lag[k][0:len(lag[k])], por_gamma[k][0:len(

por_gamma[k])], color=color[j], marker=’o’, linestyle=’dashed’,
linewidth=1,markersize=5,label = ’Porosity’)

31 print(’Preferential Direction:’,azi[j],’;cor:’,color[j],’;
lag[’+str(k)+’], por_gamma[’+str(k)+’]’)

32 k +=1
33 plt.show()

In Code 9, firstly, it was defined the arrays to receive the lag separation values (lag dist in line
1), the azimuth directions (azi in line 2), the color for each direction (color in line 3), the classes of
distances (lag in line 4), the semivariance values (por gamma in line 5), and the number of pairs
for each class of distance (por npair in line 6). In the sequence, it was defined the trimming limits
(tmin and tmax in line 7), the lag tolerance (lag tol in line 8), the number of lags (nlag in line 8),
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the horizontal bandwidth (bandh in line 8), and the angular tolerance (atol in line 8), all of them
used as parameters for the semivariogram calculation.

The information obtained by the experimental semivariograms was used for the semivariogram
fitting. Theoretical models fitted those associated with the preferential directions of continuity
(highest and lowest range values). The fitting was executed using the make variogram function
and then the vmodel function for each direction and indicator variable. Taking as an example,
the source code used to plot the experimental semivariograms and their respective fittings for the
threshold equal to 1 (IND0) is shown in the Code 10, and the resulting plot, in the Figure 9,
where one can observe the existence of two semivariogram models (continuous lines), one for
each experimental semivariogram.
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Figure 9: Plot of the experimental semivariograms and its respective fittings in the
preferential directions of continuity for the indicator variable related to the

threshold equal to 1

The Code 10 starts with determining the figures and the subplots’ sizes (lines 1 and 2). In line
4, the position of this specific plot was defined in a grid, in this case, composed of only one plot,
using the subplot2grid function of the Matplotlib package. Between lines 5 and 10, it was defined
the overall parameters of the plot: Position of the variance a priori of the indicator variable under
analysis, limits in the X-axis, limitations in the Y-axis, label for the X-axis, label for the Y-axis,
and plot’s title, respectively. The experimental semivariograms were plotted using the function plot
(lines 11 and 12) with the respective legends (line 13). In the sequence, the semivariogram models
were determined and then plotted, whose procedures and parameters are described between the
lines 15 and 20 for the azimuth 0°and between the lines 22 and 27 for the azimuth 90°. Lastly, the
figure was saved in PDF format using the savefig function (line 29).

Applying similar procedures to that described in the Code 10 for the other semivariogram
plots, it was obtained the results shown in the Figure 10, whose fitting parameters used are shown
in Table 5.

The analysis of the range values in the experimental semivariograms for each indicator vari-
able (Figure 10 and Table 5) showed the occurrence of geometric anisotropy (differences in the
range values, with equal sill), for the thresholds equal to 1 and 3. The preferential directions for
these thresholds were the 0° (North-South) and 90° (East-West) azimuths, with North-South being
the major axis. The occurrence of anisotropy wasn’t identified in the other indicator variables,
suggesting an isotropic phenomenon for these.
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Code 10: Source code for plotting the experimental semivariogram and its respective
fitting for the threshold equal do 1

1 plt.figure(figsize=(6,3))
2 fig, axs = plt.subplots(1, 1, figsize=(6,3), constrained_layout=True)
3

4 plt.subplot2grid((1,1),(0,0))
5 plt.plot([0,200],[var[0],var[0]], linestyle=’dashed’, linewidth=1,

color=’#238A8DFF’)
6 plt.xlim(0,80)
7 plt.ylim(0,0.35)
8 plt.xlabel(’Distance (cm)’, fontsize=10)
9 plt.ylabel(’Semivariance’, fontsize=10)

10 plt.title(’Threshold = 1’, fontsize=10)
11 plt.plot(lag[0][0:len(lag[0])], por_gamma[0][0:len(por_gamma[0])],

color=’red’, marker=’o’, linestyle=’dashed’,linewidth=1, markersize
=5,label = ’Azimuth 0Â° - IND0’)

12 plt.plot(lag[3][0:len(lag[3])], por_gamma[3][0:len(por_gamma[3])],
color=’darkblue’, marker=’o’, linestyle=’dashed’,linewidth=1,
markersize=5,label = ’Azimuth 90Â° - IND0’)

13 plt.legend(fontsize=12)
14

15 nugg[0] = 0.01; nst = 1; it11[0] = 1; cc11[0] = var[0]-nugg[0];
16 azith[[0],[0]] = 0; hmaxmin11[[0],[0]]=48; hmaxmin11[[0],[0]] = 48
17 vario_IND0_az0 = GSLIB.make_variogram(nugg[0],nst,it11[0],cc11[0],azith

[[0],[0]],hmaxmin11[[0],[0]],hmaxmin11[[0],[0]])
18 nlag = 160; xlag = 0.5;
19 index_IND0_az0, h_IND0_az0, gam_IND0_az0, cov_IND0_az0, ro_IND0_az0 =

geostats.vmodel(nlag, xlag,azith[[0],[0]], vario_IND0_az0)
20 plt.plot(h_IND0_az0,gam_IND0_az0,color=’red’)
21

22 nugg[0] = 0.01; nst = 1; it11[0] = 1; cc11[0] = var[0]-nugg[0];
23 azith[[0],[1]] = 90; hmaxmin11[[0],[1]] = 30; hmaxmin11[[0],[1]] = 30
24 vario_IND0_az90 = GSLIB.make_variogram(nugg[0],nst,it11[0],cc11[0],

azith[[0],[1]],hmaxmin11[[0],[1]],hmaxmin11[[0],[1]])
25 nlag = 160; xlag = 0.5;
26 index_IND0_az90, h_IND0_az90, gam_IND0_az90, cov_IND0_az90,

ro_IND0_az90 = geostats.vmodel(nlag, xlag,azith[[0],[1]],
vario_IND0_az90)

27 plt.plot(h_IND0_az90,gam_IND0_az90,color=’darkblue’)
28

29 plt.savefig(’Exp_adjusted_semivariogram_thr_1.pdf’, dpi=800,
bbox_inches=’tight’)

30 plt.show()

The existence of preferential directions of continuity can indicate a directional propagation of
the failure since the RMSD values vary more gradually in a direction in relation to the other ones.
Therefore, this information, only derived from semivariograms, can be helpful in mapping this
aspect.

The results of the semivariograms’ fitting (Table 5) show the presence of two types of models:
spherical (threshold equal to 1) and Gaussian (thresholds equal to 2, 3, and 4). Since the Gaussian
model indicates a more continuous (homogeneous) relation to the spherical one, the results show a
highly constant phenomenon for the thresholds equal to 2, 3, and 4, also occasioned by the absence
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of the nugget effect in these. Because 62% of the RMSD values are lower than 1, the indicator
kriging results for the threshold equal to 1 may be characterized to have a spatial variability much
higher than in the other ones, reflected by the semivariogram’s shape (fitted by spherical model),
and their nugget effect, which represents 4,06% of the sill. Furthermore, the fitting of the indicator
semivariogram attributed to the threshold equal to 4 (Figure 10) was based on only one point
of the experimental semivariogram. However, this is an expected result once semivariograms
based on indicator variables related to values situated on the distribution’s upper tail may result in
deteriorated semivariograms, with few points attributed to the structured region (distances lower
than the range).

The input dataset and the information derived from the semivariogram fitting were used to
obtain the estimates by the indicator kriging method. In this step, initially, it was necessary to
define the general parameters for estimating, described in the Code 11.
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Figure 10: Experimental semivariograms in several directions for all indicator
variables

Table 5: Parameters of the indicator semivariograms’ fitting.

Structure 1
Threshold Indicator Variable Orientation Nugget Effect Model Contribution Range (cm)

1 IND0 Azimuth 0° 0.01 spherical 0.236 48.0
Azimuth 90° 0.01 spherical 0.236 30.0

2 IND1 Azimuth 0° 0.01 Gaussian 0.182 24.5
Azimuth 90° 0.01 Gaussian 0.182 24.5

3 IND2 Azimuth 0° 0.00 Gaussian 0.114 22.0
Azimuth 90° 0.00 Gaussian 0.114 19.0

4 IND3 Azimuth 0° 0.00 Gaussian 0.039 17.0
Azimuth 90° 0.00 Gaussian 0.039 17.00

Pereira, Paulo E. C., et al. (2022) Kriging & I-based SHM to Damage Detection 2D Structures pp. 427-458

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 447



Code 11: Source code for determining general parameters to obtain the kriging
estimates

1 xmin = 0.0; xmax = 100.0
2 ymin = 0.0; ymax = 100.0
3 xsiz = 4; ysiz = 4
4 nx = 25; ny = 25
5 xmn = 2; ymn = 2
6 nxdis = 3; nydis = 3
7 ndmin = 1; ndmax = 4
8 radius = lag_dist[0]
9 ktype = 1

10 ivtype = 1
11 tmin = -999; tmax = 999;
12 vmin = 0.0; vmax = 1.0;
13 ncut = 4
14 pdano = np.array(df[’PDANO’])
15 cont1 = 0; cont2 = 0; cont3 = 0; cont4 = 0
16 th1 = 1; th2 = 2; th3 = 3; th4 = 4
17 for i in pdano:
18 if i<=th1:
19 cont1 += 1
20 if i<=th2:
21 cont2 += 1
22 if i<=th3:
23 cont3 += 1
24 if i<=th4:
25 cont4 += 1
26

27 gcdf1 = (cont1/len(pdano))
28 gcdf2 = cont2/len(pdano)
29 gcdf3 = cont3/len(pdano)
30 gcdf4 = cont4/len(pdano)
31 print(gcdf1, gcdf2, gcdf3, gcdf4)

In the Code 11 it was necessary to define, initially, the block model’s parameters: Minimum
and maximum coordinates in the X-axis (line 1); Minimum and maximum coordinates in the Y-
axis (line 2); cell’s dimensions in the X and Y directions (line 3); the number of cells in the X and
Y axis (line 4), and; origin coordinates of the model (line 5). In the sequence, it was specified the
general parameters for the kriging process: The number of points to be estimated inside each cell
in the X and Y directions (line 6), in such a way that the estimated value in each cell is the average
of the estimated points in each one; the minimum and a maximum number of input data inside the
search ellipse to be used (line 7); maximum search distance (line 8); kriging estimator to be used,
which can be 0 for simple kriging or 1 for ordinary kriging (line 9); type of the variable being
estimated, which can be 0 for categorical variable or 1 for a continuous one (line 10); trimming
limits (line 11); minimum and maximum value for legend displaying (line 12), and; the number of
thresholds (line 13).

Lastly, still in the Code 11, it was calculated the global cumulative distribution function of
the variable PDANO (lines 14 to 31) related to the damage metric values for the threshold values
defined previously (1, 2, 3, and 4), which was executed using a for loop to count the number of
data lower than the respective threshold value, and then, dividing this amount by the total number
of data in the PDANO variable, resulting in the following global cumulative distribution function:
0.62, 0.76, 0.87 and 0.96, related to the thresholds equal to 1, 2, 3 and 4, respectively.

The cell’s sizes were defined in such a way due to the following: (1) the cell’s dimensions
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are lower than all ranges in the semivariogram models, and; (2) the cell’s sizes are multiple of
the plate’s dimensions in each direction, allowing an adequate adjustment of the model about the
actual dimensions of the plate. Also, the chosen cell’s dimensions define the model’s resolution
(40 cm).

Regarding the kriging estimator used to obtain the estimates (parameter ktype in Code 11),
it was used the ordinary kriging one, due to its capability to reproduce more properly the local
variations of the variable being estimated (local estimation method).

In the sequence, it was defined lists for storing some information for the ik2d function of the
Geostatspy package, shown in the Code 12.

Code 12: Source code for defining the list objects for the ik2d process
1 thresh = [th1,th2,th3,th4]
2 gcdf = [gcdf1, gcdf2, gcdf3, gcdf4]
3 varios = []
4 varios.append(GSLIB.make_variogram(nug=nugg[0],nst=1,it1=it11[0],cc1=

cc11[0],azi1=azith[[0],[0]],hmaj1=hmaxmin11[[0],[0]],hmin1=
hmaxmin11[[0],[1]]))

5 varios.append(GSLIB.make_variogram(nug=nugg[1],nst=1,it1=it11[1],cc1=
cc11[1],azi1=azith[[1],[0]],hmaj1=hmaxmin11[[1],[0]],hmin1=
hmaxmin11[[1],[1]]))

6 varios.append(GSLIB.make_variogram(nug=nugg[2],nst=1,it1=it11[2],cc1=
cc11[2],azi1=azith[[2],[0]],hmaj1=hmaxmin11[[2],[0]],hmin1=
hmaxmin11[[2],[1]]))

7 varios.append(GSLIB.make_variogram(nug=nugg[3],nst=1,it1=it11[3],cc1=
cc11[3],azi1=azith[[3],[0]],hmaj1=hmaxmin11[[3],[0]],hmin1=
hmaxmin11[[3],[1]]))

8 no_trend = np.zeros((1,1,1,1))
9 ikmap = ik2d(df,’X’,’Y’,’PDANO’,ivtype,0,4,thresh,gcdf,no_trend,tmin,

tmax,nx,xmn,xsiz,ny,ymn,ysiz,ndmin,ndmax,radius,ktype,vario=varios)

The Code 12 starts with the definition of the following list objects: Thresholds to be used (line
1); a global cumulative distribution function for each threshold (line 2), and; a list for receiving
the semivariogram fitting information, which was specified in the sequence, between the lines 4
and 7, and appended in a single list named varios. In the sequence, an array of ones was created
to indicate the absence of trends (line 8). Then, it was defined a variable named ikmap for storage
of the results of the ik2d process, whose parameters are described in line 9 of the Code 12, where
each of these is linked to a specific variable defined in the previous steps.

The indicator kriging results are in the form of probability below thresholds due to the proce-
dure performed to create the indicator variables (Eq. 9). To represent the results more appropri-
ately, the results were converted to probability above thresholds by applying the Eq. 11, subtract-
ing each probability (I(x0)) by one (maximum probability), resulting, then, in the probabilities of
each estimated cell (x0 location) to be higher than the respective threshold.

IAbove(x0) = 1− I(x0) (11)

The Eq. 11 was applied to the indicator kriging results and each input indicator variable,
aiming to represent them in the form of probability above thresholds. This was done by adapting
the original locpix st function of the Geostatspy package, whose part of the source code is shown
in the Code 13.
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Code 13: Part of the locpix st function’s source code where the adaptations were
made

65 array = 1-array
66 array[len(array)-1,len(array)-1] = 0
67 array[len(array)-1, 0] = 0
68 array[0, len(array)-1] = 0
69 array[0, 0] = 0
70 cs = plt.contourf(
71 xx,
72 yy,
73 array,
74 cmap=cmap,
75 vmin=vmin,
76 vmax=vmax,
77 levels=np.linspace(vmin, vmax, 100),
78 )
79

80 plt.scatter(
81 df[xcol],
82 df[ycol],
83 s=None,
84 c=1-df[vcol],
85 marker=None,
86 cmap=cmap,
87 vmin=vmin,
88 vmax=vmax,
89 alpha=0.8,
90 linewidths=0.8,
91 verts=None,
92 edgecolors="black",
93 )

The conversion of the probabilities below thresholds to the probabilities above thresholds in
the indicator kriging results was done using the Eq. 11, applied in line 65 of the Code 13. In
the sequence, the map was centralized in the plot using the procedures shown between lines 66
and 69 since the map was slightly displaced in the original function. The last modification was
related to the input indicator variable, subtracted from 1 (maximum probability), done using the
procedure shown in line 84. Therefore, all data plotted using the locpix st function was in the form
of probability above thresholds. The indicator kriging results and the respective input data were
plotted using the function above, resulting in the plots shown in Figure 11, and the source code
used to generate these are displayed in the Code 14.

For plotting the estimated values and the input data, it was used the locpix st function of the
Geostatspy package, as shown in the Code 14, starts with the addition of the information (estimated
and input data) related to the threshold equal to 1 (lines 1 to 2). Similarly, the other plots were
added by the subplot function. In each locpix st function, it’s necessary to add the succeeding
information, ordered in the following sequence: an array containing the indicator kriging results
to be plotted; minimum coordinate in the X-axis; maximum coordinate in the X-axis; minimum
coordinate in the Y direction; maximum coordinate in the Y direction; cell’s size in the X-axis;
minimum value for legend; maximum value for legend; the name of the dataset (in the format
of a dataframe) containing the input values; the name of the column in the dataset storing the
coordinates in the X-axis; the name of the column in the dataset storing the coordinates in the Y-
axis; the name of the variable in the input dataset to be plotted, in this case, the indicator variables;
plot’s title; label in the X-axis; label in the Y-axis; legend’s title, and; color palette to be used.
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Figure 11: Probability maps of the damage metric values to be higher than each
defined threshold, jointly with the respective input data

Code 14: Source code to plot the estimated and the input values of probability above
thresholds

1 plt.subplot(221)
2 locpix_st(ikmap[:,:,0],xmin,xmax,ymin,ymax,xsiz,0.0,1.0,df,’X’,’Y’,’

IND0’,’Threshold = 1’,’X (cm)’,’Y (cm)’,’Probability above
threshold’,cmap)

3 plt.subplot(222)
4 locpix_st(ikmap[:,:,1],xmin,xmax,ymin,ymax,xsiz,0.0,1.0,df,’X’,’Y’,’

IND1’,’Threshold = 2’,’X (cm)’,’Y (cm)’,’Probability above
threshold’,cmap)

5 plt.subplot(223)
6 locpix_st(ikmap[:,:,2],xmin,xmax,ymin,ymax,xsiz,0.0,1.0,df,’X’,’Y’,’

IND2’,’Threshold = 3’,’X (cm)’,’Y (cm)’,’Probability above
threshold’,cmap)

7 plt.subplot(224)
8 locpix_st(ikmap[:,:,3],xmin,xmax,ymin,ymax,xsiz,0.0,1.0,df,’X’,’Y’,’

IND3’,’Threshold = 4’,’X (cm)’,’Y (cm)’,’Probability above
threshold’,cmap)

9 plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=2.2, wspace
=0.1, hspace=0.2)

10 plt.savefig(’IK2D_map.pdf’, dpi=800, bbox_inches=’tight’)
11 plt.show()
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The resulting plots were adjusted using the subplots adjust function (line 9) and then saved in
the PDF format using the savefig function (line 10), resulting in the plots shown in Figure 11.

Figure 11 shows the probability maps of the RMSD values being higher than their respective
thresholds. The results for the threshold equal to 1 exhibit a wide area of high probability, indi-
cating an eventual area affected by the damage. Also, the elongated shape of the area where these
high values occur can mean the existence of locations more impacted by the damage than others,
providing information for supporting the decision-making process in condition-based maintenance
programs.

Since the damage is located at the plate’s center, as the thresholds increases, the highest prob-
abilities of the RMSD values to be greater than each threshold are sequentially restricted to the
plate’s center, converging the existence of these to this location, where the RMSD values were
higher than 4.0. Therefore, by mapping the RMSD values to be higher than four, it was possible
to predict the structural damage’s location.

In the sequence, the average of the probabilities below thresholds in the indicator kriging re-
sults and in the input data (indicator variables) was calculated to compare them, analyzing the
adherence of the estimates about the respective input indicator variables. The averages were cal-
culated using the Code 15.

The Code 15 starts with the creation of the variables: The mean value of each indicator vari-
able (mean inds in line 1), the mean value of each indicator kriging-based estimated probability
(mean iks in line 2), the percentage deviation of the estimated probabilities about the input ones
(desv means percent in line 3). In the sequence, a for loop (lines 4 to 7) was used to calculate
the means and the percentage deviations, each related to a specific threshold value. Lastly, the re-
sulted percentage deviations were formatted to a maximum decimal place of 2, done by the format
function in a for loop (lines 10 and 11).

The average of the probabilities below thresholds obtained by the indicator kriging approach
was compared to its respective input indicator variable, resulting in the plot shown in Figure 12A,
whose percentage differences are plotted in Figure 12B. The source code used for preparing these
is shown in the Code 16.

Code 15: Source code for calculating of the estimate’s and input indicator variables’
averages

1 mean_inds=np.zeros(len(thrs))
2 mean_iks=np.zeros(len(thrs))
3 desv_means_percent=np.zeros(len(thrs))
4 for i in range(0,len(thrs)):
5 mean_inds[i]=np.mean(df[’IND’+str(i)])
6 mean_iks[i]=np.mean(ikmap[:,:,i])
7 desv_means_percent[i]=((mean_iks[i]-mean_inds[i])/mean_inds[i])*100
8

9 desv_means_percent_format=np.zeros(len(desv_means_percent))
10 for i in range(0,len(desv_means_percent)):
11 desv_means_percent_format[i]="{:.2f}".format(desv_means_percent[i

],2)
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Code 16: Source code for plotting the average of the probabilities below thresholds
in the estimated and input data, and the percentage differences between these ones

1 fig = plt.figure(figsize=(14,5))
2 plt.subplot(121)
3 plt.plot([1,2,3,4],mean_inds,label=’Input data’,marker=’o’, color=’

#440154ff’)
4 plt.plot([1,2,3,4],mean_iks, label=’Estimated data’, marker=’o’, color=

’#22A884FF’)
5 plt.legend(loc=’lower right’,fontsize=12)
6 plt.xlabel(’Threshold value’, fontsize=12)
7 plt.ylabel(’Mean’, fontsize=12)
8 plt.ylim(0,1)
9 plt.xticks([1,2,3,4])

10 plt.text(1,0.92,’A’,fontsize=16,fontweight=’bold’)
11

12 plt.subplot(122)
13 plt.bar([1,2,3,4],desv_means_percent,color=’#2A788EFF’)
14 plt.xticks([1,2,3,4])
15 plt.xlabel(’Threshold value’, size=12)
16 plt.ylabel(’Deviation (%)’, size=12)
17 plt.ylim(0,12)
18 plt.text(0.6,11,’B’,fontsize=16,fontweight=’bold’)
19 plt.text(0.9,10,’’+str(desv_means_percent_format[0])+’’, fontsize=12)
20 plt.text(1.9,5,’’+str(desv_means_percent_format[1])+’’, fontsize=12)
21 plt.text(2.9,2.1,’’+str(desv_means_percent_format[2])+’’, fontsize=12)
22 plt.text(3.9,0.25,’’+str(desv_means_percent_format[3])+’’, fontsize=12)
23

24 plt.tight_layout()
25 plt.savefig(’difference_results_input.pdf’, dpi=800, bbox_inches=’tight

’)
26 plt.show
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Figure 12: A) Average of the indicator variables in the input data and in the
IK-based model (probabilities below thresholds). B) Percentage differences between

the averages of the probabilities in the kriging-based model and the input data

In the Code 16, initially, it was defined the plot’s size (line 1). In the sequence, using the
subplot function (line 2), the first plot was positioned in the specified grid (1 row and 2 columns).
Then, it was plotted the average of the probabilities below thresholds in the input data against the
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threshold values (line 3) and the average of the probabilities in the estimated results against each
threshold value (line 4); this first plot was formatted using the functions between the lines 5 and
10. Also, using the subplot function, the second plot was positioned in the grid (line 12) and was
created using the bar function (line 13) and subsequently formatted (lines 14 to 22). Lastly, it was
applied the tight layout option (line 24) and the final plot was saved using the savefig function
(line 25).

Comparing the average of the probabilities in the kriging-based model with those of the input
data (Figure 12A and Figure 12B), one can ensure that the mean values were approximately re-
produced in the model, whose highest deviation was 9.84%, attributed to the threshold equal to 1.
Such deviation can be a consequence of the higher spatial variability intrinsic to the indicator vari-
able associated with this threshold than the other ones, observed by the presence of the spherical
model in the semivariogram fitting of this variable (IND0). In contrast, in the others, the Gaussian
one was used, which indicates a phenomenon with a much higher continuity (Table 10).

Also, it’s noted in Figure 12B the occurrence of the smallest deviation (0.05%) in the thresh-
old equal to 4. Despite the low reliability of the experimental semivariograms for this threshold,
as stated previously, the occurrence of a smaller deviation for this one, in relation to the others,
can be a consequence of the high spatial continuity in this scenario (fitting by Gaussian models),
with probabilities higher than zero strictly limited to the plate’s center, where the damage is lo-
cated. Thus, despite instabilities in the semivariograms of indicator variables related to very high
thresholds, the results were not inconsistent, allowing the prediction of the structural damage’s
occurrence.

5 Concluding Remarks

This chapter briefly discussed concepts related to ISHM and kriging methods used to locate struc-
tural damages. Using a case study built step by step, the elementary phases were detailed using
Python language packages to find structural damage in the center of an aluminum plate. The
results showed that this new approach made it possible to estimate the location of the damage,
resulting in maps of easy visual identification.

Additional studies are needed to better understand the technique’s applicability in structural
health monitoring systems, especially regarding the dimensions of the piezoelectric element mesh
(spacing and number of elements in the mesh) for the identification of the damage occurrence
site, through the proposed approach. In this aspect, other geostatistical tools, such as conditional
simulation, could be explored for application in structural integrity monitoring systems regarding
sensor mesh determination.
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A Module geostatspy.GSLIB

Table A1: Some functions of the geostatspy.GSLIB

Funtion Application
ndarray2GSLIB Utility to convert a NumPy’s 1-dimensional or 2-dimensional array to a GSLIB’s

Geo-EAS file, which can be used in GSLIB methods
GSLIB2ndarray Utility to convert a GSLIB’s Geo-EAS file to a NumPy’s 1-dimensional or 2-

dimensional array for using in Python methods
Dataframe2GSLIB Utility to convert a Pandas’ Dataframe to a GSLIB’s Geo-EAS file for using in

GSLIB methods
GSLIB2Dataframe Utility to convert a GSLIB’s Geo-EAS file to a Pandas’ DataFrame one for use

in Python methods
DataFrame2ndarray Utility to convert a Pandas’ DataFrame to a NumPy’s 2-D array

affine Affine distribution transformation to correct feature mean and standard deviation
nscore Transform an original distribution to a normal-shape one
declus Cell-based declustering

make variogram Make a dictionary of semivariogram parameters for use in estimation and/or sim-
ulation methods

gamv Calculation of semivariograms in an irregularly spaced 2-D spatial data
varmap Map of semivariograms for regularly spaced 2-D data

varmapv Map of semivariograms for irregularly spaced 2-D data
vmodel Semivariogram fitting
kb2d Simple and/or ordinary kriging for 2-D data

sgsim uncond Non-conditional sequential Gaussian simulation for 2-D data
sgsim Sequential Gaussian simulation for 2-D or 3-D data

cosgsim uncond Non-conditional sequential Gaussian Co-simulation for 2-D data
sample Utility to create samples from a 2-D model with provided X and Y, and append

to a DataFrame
gkern make a Gaussian kernel for convolution, moving window averaging

regular sample Utility to extract samples regularly spaced from a 2-D spatial model
random sample Utility to extract samples randomly spaced from a 2-D spatial model

pixelplt Plotting of 2-D estimated grids. Reimplementation in Python of the GSLIB’s
pixelplt with Matplotlib methods

pixelplt st Plotting of 2-D estimated grids. Reimplementation in Python of the GSLIB’s
pixelplt with Matplotlib methods, with support for sub plots.

pixelplt log st Plotting of 2-D estimated grids. Reimplementation in Python of the GSLIB’s
pixelplt with Matplotlib methods, with support for sub plots and log color bar

locpix Plotting of 2-D estimated grids and sample points. Reimplementation in Python
of a GSLIB’s MOD with Matplotlib methods

locpix st Plotting of 2-D estimated grids and sample points. Reimplementation in Python
of a GSLIB’s MOD with Matplotlib methods, with support for sub plots

locpix log st Plotting of 2-D estimated grids and sample points. Reimplementation in Python
of a GSLIB’s MOD with Matplotlib methods, with support for sub plots and log
color bar

locmap Plotting of 2-D sample points. Reimplementation in Python of a GSLIB’s MOD
with Matplotlib methods

locmap st Plotting of 2-D sample points. Reimplementation in Python of a GSLIB’s MOD
with Matplotlib methods, with support for sub plots

hist Utility for histogram plotting. Reimplementation in Python of the GSLIB’s hist
with Matplotlib methods

hist st Utility for histogram plotting. Reimplementation in Python of the GSLIB’s hist
with Matplotlib methods, with support for sub plots

Pereira, Paulo E. C., et al. (2022) Kriging & I-based SHM to Damage Detection 2D Structures pp. 427-458

In Jorge, Ariosto B., et al. (Eds.) Uncertainty Modeling: Fundamental Concepts and Models, Vol. 3, UnB 458


	Chapter 13



