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ABSTRACT. With the advent of the Brazilian Government 
Biodiesel Program and the increasing demand for vegetable oils, 
Jatropha curcas has been emphasized as an alternative raw material. 
Given the known water stress tolerance of this species, we evaluated 
the plasticity of photosynthetic metabolism in nine genotypes of J. 
curcas under water stress (WS). The hypotheses that (1) the 
photosynthetic metabolism of J. curcas is plastic and changes 
towards crassulacean acid metabolism  (CAM)  according to water 
availability and (2) the plasticity of the metabolic alteration is 
variable among the different genotypes and is related to physiological 
adjustments, were tested. Water deficit led to 167 and 187% increase 
in phosphoenolpyruvate carboxylase (PEPC) activity in leaves 
collected at 4 and 16 h,, respectively, when compared to control 
plants. The accumulation of organic acids (malate and citrate) 
differed among genotypes and WS treatments. There was an average 
increase of 270% for plants submitted to WS, when citrate was 
compared to malate. There was an increase of 62% in total soluble 
sugar content and a decrease of 27% in starch content in plants under 
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WS when compared to controls. Significant effects of genotype and 
watering regime were detected for carbon isotope composition of leaf 
biomass. We detected changes in photosynthetic metabolism towards 
low CAM levels, thus explaining the maintenance of efficiency of 
water use under water deficit. 
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INTRODUCTION 
 
Jatropha curcas (Euphorbiaceae), popularly known as physic nut is widely 

cultivated in many tropical and subtropical regions, being considered a promising crop for 
the production of biodiesel (Eijck et al., 2014). The oil content in the seeds can reach 50%; 
this oil has been used as a purgative andmany other medicinal uses, as well as in the 
manufacture of paints, soaps, as a lubricant and diesel fuel (Kumar and Sharma, 2008). 
Moreover, the residue of the oil extraction has a high protein content (60-65%), with 
potential to be transformed into food for birds, ruminants and fish (Jongschaap et al., 2007). 
Also, the cultivation of J. curcas offers the advantages of not competing directly with food 
production, of mitigating soil degradation and of recovering marginal or abandoned land 
(Kumar and Sharma, 2008). Although J. curcas has been widely reported as a drought-
tolerant species, recent results have demonstrated negative effects of water deficit on 
several physiological and morphological characteristics (Arcoverde et al., 2011; Sapeta et 
al., 2013; Oliveira et al., 2016; Santana et al., 2015; Silva et al., 2016). 

One well studied strategy for tolerance to drought and other factors such as salinity, 
temperature and luminosity, which has been reported to occur in green succulent-stem 
species is the transition from C3 photosynthetic metabolism to crassulacean acid metabolism 
(CAM) under water deficiency conditions (Cushman and Borland, 2002; Dodd et al., 2002). 
Such metabolic plasticity would result in water conservation in arid environments as have 
been reported for several species, including some of the family Euphorbiaceae (Cushman 
and Borland, 2002; Dodd et al., 2002; Herrera, 2013).  

CAM is also characterized by an intense daily carbon flow from carbohydrates, 
such as starch and sucrose for the synthesis of organic acids such as malate and citrate 
acids, which are stored during the dark period for use during the light period (Freschi et al., 
2010a). There have been reports suggesting that, as in other species with green succulent 
stems, there is a low level of drought-induced CAM in J. curcas leaves (Maes et al., 2009; 
Rajaona et al., 2013). This hypothesis has been supported by recent results showing 
increased nocturnal acidification of foliar extracts in water deficit as compared to well-
watered plants, as well as changes in the night leaf gas exchange diel (Winter and Holtum, 
2015) in J. curcas. Although it has been suggested that the low level of CAM observed in J. 
curcas is related to stem carbon (Winter and Holtum, 2015) conservation, the implications 
of such metabolic plasticity are still under debate.  

Carbon isotopic composition (δ13C) analysis has proven to be a valuable technique 
to be used both in long-term (seasonal) and daily carbon changes acquired directly through 
dark CAM reactions. The low percentage of 13C in phosphoenolpyruvate carboxylase 
(PEPC) distinguishes the carbon in the plant material that is fixed by the reactions of the 

http://www.funpecrp.com.br


Genetics and Molecular Research 18 (2): gmr18228 ©FUNPEC-RP www.funpecrp.com.br 

 
 
 
 
 
 

 

Plasticity of photosynthetic metabolism in Jatropha curcas                                           3 

 
 

dark CAM from that fixed directly from atmospheric CO2 by C3 metabolism (RUBISCO) 
(Griffiths, 1992).  

We examined the amplitude of C3-CAM change induced by drought in leaves of 
different genotypes of J. curcas by means of the evaluation of overnight acidification of 
leaves tissues, as well as of physiological and growth changes. The hypotheses that (1) the 
photosynthetic metabolism of J. curcas is plastic and changes towards the CAM according 
to water availability and (2) the plasticity of the metabolic alteration is variable among the 
different genotypes and is related to physiological adjustments, were tested. 

MATERIAL AND METHODS 

Plant material and growth conditions 
 
The experiment was conducted in a greenhouse on the campus of the State 

University of Santa Cruz (UESC), located in the city of Ilhéus, BA (14°47'00" S, 39°02'00" 
W). During the experiment, the photosynthetically active radiation, temperature and relative 
humidity of the air were monitored and recorded using, respectively, a quantum S-LIA-
M003 and temperature/relative humidity S-THB-M002 sensors, connected to a HOBO 
Micro Station Data Logger H21-002 (Onset Computer Corporation, USA). Nine genotypes 
collected from different regions of Brazil (Table 1) to form the Germplasm bank of 
EMBRAPA were used. Seeds of J. curcas from the germplasm bank of Embrapa 
Agroenergia - Federal District were germinated in pots (five per pot), containing 12 dm³ of 
soil whose fertilization was carried out according to the chemical analysis. 

 
 

Table 1. Jatropha curcas genotypes used in the experiment with the respective regions where they were 
collected to be included in the Germplasm Bank of EMBRAPA Agroenergia, DF, Brazil. 
 

Genotypes Region 
121 Bom Jardim-RJ 
124 Maranhão-MA 
148 Candeias-BA 
168 Minas Gerais-MG 
222 Paraná-PR 
215 São Francisco do Glória-MG 
226 Água de Santa Bárbara-SP 
298 Sidrolândia-MS 
299 Rio Grande do Sul-RS 

 
After 20 days of germination, only one plant was left per pot. The pots were 

covered with aluminum foil to avoid evaporation and heating of the soil and the water 
deficiency treatment was started and maintained for a period of 42 days. 

The treatments consisted of two watering regimes measured as a percentage of the 
tank capacity (TC): control plants (100% TC) and plants submitted to water deficiency 
(50% TC). The plants were watered daily, always at 8 o'clock in the morning, at intervals of 
24 h, with a water volume defined by the watering regime. The irrigation schedule led to 
soil matrix potential varying from -33.1 to -15.2 kPa (control) and from -207.0 and -89.9 
kPa (water deficit). The soil moisture was determined by the gravimetric method and the 
soil matrix potential was estimated from the characteristic soil water retention curve. 
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Growth 
 
All evaluations were performed 42 days after treatment (DAT). Plant growth was 

accessed by measuring height, diameter at collar, number of leaves and leaf area. Leaf area 
was estimated from values of length (P) and maximum width (L) of the leaves (Pompelli et 
al., 2012). Then, the aerial part (leaves and stem) and the roots were collected and cleaned. 
The roots were separated from the soil by dispersion with running water, using a 0.5mm 
mesh sieve. Subsequently, root images were captured with a digital camera (Sony DSC-
H400). The images were saved in TIFF format and the WinRHIZO commercial software 
package was used for estimation of volume, length, total area and surface area of roots. 
Specific leaf area (SLA, the ratio between leaf area and dry mass) were estimated from five 
leaf discs (5 mm diameter) collected from the third completely mature leaf. 

Leaf water potential 
 
Leaf water potential (Ψpd) was measured before dawn (4:00 a.m.) and at noon 

(Ψmd). For this purpose, we used a pressure chamber PMS1000 (PMS Instrument 
Company, USA). 

Water consumption and water use efficiency of biomass (WUEb) 
 
Water consumption in both treatments during the 62 days of the experiment was 

monitored through periodic weighing of the pots using load cells CSA/ZL e 100 (MK 
Control Instruments, Brazil) coupled to an automatic data collector model CR1000 
(Campbell Scientific Inc., USA). Based on the biomass and water consumption data, water 
use efficiency of biomass was calculated as the ratio between the total dry biomass and the 
water consumed during the experiment, which was calculated from the daily replenishment 
of water in each treatment due to evapotranspiration. 

Activity of PEPC 
 
At the end of the experiment (42 DAT), leaf (4 h and 16 h) and stem (base and 

apex) samples were collected, immediately frozen in liquid nitrogen and stored in a freezer 
at -80°C. Protein extraction was performed on macerated leaf and stem samples, using a 
mortar and a cold pistil. After centrifugation at 14000 x g for 30 min, the supernatant was 
collected and used for the enzymatic activity assays. The amount of protein in the extract 
was determined by the Bradford (1976) method, the readings were performed using a 
microplate spectrophotometer (SpectraMax® Paradigm® - Multi-mode detection platform, 
Molecular Devices). 

Approximately 0.02  g of lyophilized material (leaf or stem samples) was macerated 
in extraction medium containing 400 μL of 2 mM EDTA buffer, 5 mM β-mercaptoethanol, 
1mM PMSF and 1% PVP-40 dissolved in 50 mM Tris-HCl pH 7.8. The extract was 
ultrasonicated (Ultrasonic processor Gex 130, 130 W) on ice until total tissue rupture, with 
pulses of 8 s at intervals of 10 s, and amplitude of 70%. The samples were then centrifuged 
for 15 min at 14,000 x g at 4°C. The activity of PEPC was measured in the supernatant by 
NADH extinction-induced decrease of absorbance at 340 nm to 300 s (Degl'innocenti et al., 
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2002). The assay was performed in a reaction mixture containing 10 mM NaHCO3, 0.3 mM 
NADH, 5 mM MgCl2 and 33 mM and MDH 33 nkat dissolved in 50 mM Tris-HCl pH 7.8 
buffer and enzymatic extract. The reaction was initiated by the addition of 20 mM 
phosphoenolpyruvate (PEP). 

Titratable acidity 
 
The quantification of the titratable acidity was performed in fresh leaf discs (5 mm). 

Three leaf discs were boiled in 10 mL of deionized water for 15 min, cooled and titrated 
with NaOH 0.01N after addition of 30 μL of phenolphthalein to estimate the H+ 
corresponding to malate (pH 7.0) and 30 μL of bromothymol blue for citrate (pH 8.4). 

Total soluble sugars and starch 
 
The quantification of total soluble sugars (TSS) was performed by the anthrone 

reaction according to the methodology of Clegg et al. (1956). Readings of absorbance at 
620 nm were obtained using a spectrophotometer (SpectraMAx® Paradigm® - Multi-mode 
detection platform, Molecular Devices), using as standard glucose and water mixture as 
blank. 

For the starch determination, two consecutive extractions of the material were 
carried out, using the same extractor, at 80°C for 30 min. The quantification of starch was 
carried out by reaction with anthrone (0.2%), according to the method of McCready et al. 
(1950), and the samples were read in a spectrophotometer at a wavelength of 620 nm, using 
a glucose solution of 0 to 50 µg.mL-1 as a standard. 

Carbon isotopic composition (δ13C) 
 
Leaf and stem samples were dried and ground, and approximately 1 mg of the fine 

powder was packed into 3 mm x 35 mm tin capsules (Experimental Microanalysis Ltd., 
Okehampton, United Kingdom). The samples were then sent for analysis at Godwin 
Laboratory at the University of Cambridge, UK. The readings were obtained from a 
Costech elemental analyzer coupled to a mass spectrometer (Thermo Fisher Scientific, 
Waltham, MA, USA) and the analyses were performed using linear 13C/12C two-point 
normalization software (Paul et al., 2007). Weighed samples of standards were analyzed at 
various points throughout the run allowing percentage carbon to be calculated for the batch 
of samples. Reference standards from IAEA in Vienna are also run at intervals throughout 
the sequence and these values are used to calibrate to the international standards for 12C/13C 
(δ13C VPDB).  Precision of analyses was +/- 0.5% for C, better than 0.1‰ for 12C/13C                 

Experimental design and statistical analysis 
 
The experiment was conducted in a completely randomized design, in a 2 x 9 

factorial scheme, consisting of two levels of water availability and nine genotypes of J. 
curcas, with five replicates per treatment. The results were submitted to a 5% significance 
test, by factorial ANOVA and when indicated, average comparisons were carried out by 
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means of the Scott-Knott test at the same level of significance. The analyses were carried 
out with the aid of the SISVAR program (Ferreira, 2011). 

RESULTS  
 
The average values of minimum and maximum air temperature and of relative 

humidity measured during the experimental period were 20, 29°C and 75%, respectively. 
Photosynthetically active radiation integrated throughout the day was, on average, 12.1 mol 
photons m-2 day-1, varying between 5.4 to 19.3 mol photons m-2 day-1. 

Growth 
 
Except diameter of stem at collar, there were no significant differences among 

genotypes for growth variables. Diameter at collar was not decreased by water deficit only 
in genotype CNPAE 299 (Table 2). Moreover, water deficit led to a significant decrease of 
LA in genotypes CNPAE 124 (62%), 148 (61%), 215 (60%), 226 (55%) and 299 (53%). 
However, WS affected height across all genotypes, with average reductions of 74% when 
compared to the control plants. A significant decrease in leaf number was observed only in 
genotype CNPAE 215 (Table 2). 

 
 

Table 2. Leaf area (LA), height (H), diameter at collar (D) and number of leaves (NL) of young plants of 
Jatropha curcas grown under full irrigation (control) or water stress (WS) for 42 days.  
 

Genotypes  LA (cm²) H (cm) D (cm) NL 

121 Control 2515.8±214.8Aa 50.8±2.2Aa 2.44±0.0Aa 18.6±0.8Aa 

WS 1711.4±144.3Aa 39.6±3.2Ab 2.18±0.0Ab 17.0±0.5Aa 

124 Control 2814.9±266.9Aa 48.0±1.7Aa 2.44±0.0Aa 19.4±1.2Aa 

WS 1742.5±160.3Ab 33.8±2.9Ab 2.04±0.1Ab 14.8±0.8Aa 

148 Control 2723.4±604.9Aa 51.0±4.6Aa 2.32±0.0Aa 20.4±1.1Aa 

WS 1647.9±215.3Ab 36.2±4.0Ab 1.94±0.1Bb 15.4±1.0Aa 

168 Control 2701.8±197.4Aa 50.6±2.9Aa 2.50±0.0Aa 18.6±0.6Aa 

WS 2141.2±188.3Aa 40.4±3.0Ab 2.25±0.0Ab 16.0±0.7Aa 

215 Control 3313.8±578.7Aa 54.8±3.9Aa 2.44±0.1Aa 26.0±5.1Aa 

WS 1996.1±90.4Ab 42.0±1.1Ab 2.06±0.0Ab 17.6±1.6Ab 

222 Control 2621.4±309.6Aa 48.0±2.3Aa 2.41±0.0Aa 20.2±2.7Aa 

WS 1819.4±132.3Aa 37.4±2.0Ab 2.06±0.0Ab 16.2±1.0Aa 

226 Control 2504.1±299.2Aa 48.7±4.5Aa 2.33±0.1Aa 21.2±3.3Aa 

WS 1378.1±139.0Ab 31.4±3.4Ab 1.90±0.0Bb 15.8±1.4Aa 

298 Control 2255.6±69.7Aa 50.8±1.2Aa 2.29±0.0Aa 18.0±0.4Aa 

WS 1783.8±228.4Aa 34.5±2.9Ab 1.80±0.0Bb 16.4±1.3Aa 

299 Control 3422.5±495.9Aa 47.4±2.3Aa 2.24±0.1Aa 20.4±2.7Aa 

WS 1806.7±226.1Ab 38.6±2.0Ab 2.13±0.1Aa 17.4±2.1Aa 

Values are mean (± standard error) of 5 replicates. Differences in lower case letters indicates differences between 
treatments within each genotype by the F-test and capital letters indicate significant differences among genotypes within 
each treatment by the Scott-Knott test. 

 
While root volume of irrigated plants was significantly greater in genotypes 121 and 

124 as compared to others, water deficit led to a significant decrease of volume in all 
genotypes (Figure 1A). No effect of genotype was observed in root length of irrigated 
plants, except in genotype CNPAE 222; a significant decrease of length was observed in 
WS plants of the other genotypes (Figure 1B). Significant decreases of 74.7, 75.2 and 53% 
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Figure 2. Specific leaf area (SLA) in Jatropha curcas subjected to water deficit (WS) for 42 days. Columns are 
means of four replicates and the bars represent the standard error of mean. Capital letters indicate comparison 
among genotypes within each treatment (control or WS) by the Scott-Knott test and lower-case comparison 
between water regimes by the F-test. 

Water relations 
 
No significant difference among genotypes and between watering regimes for pre-

dawn leaf water potential (Ψpd) was observed in this experiment (Table 3). The same was 
observed for leaf water potential measured at noon (Ψmd), except for genotype CNPAE 
222, in which under WS a significant decrease of Ψmd was observed. The average values of 
Ψmd for genotype CNPAE 222 were -0.83 and -1.37 MPa for control and WS plants, 
respectively.  

 
 

Table 3. Values of water potential predawn (Ψam) and at midday (Ψmd) measured at 42 days after 
treatment in Jatropha curcas.  
 

Genotypes Ψpd (MPa)   Ψmd (MPa) 
 Control WS  Control WS 
121 -0.47±0.08Aa -0.57±0.08 Aa -1.00±0.05 Aa -1.33±0.16 Aa 

124 -0.43±0.06Aa -0.48±0.07 Aa  -1.03±0.03 Aa -1.13±0.20 Aa 

148 -0.32±0.04Aa -0.33±0.03 Aa  -1.07±0.06 Aa -1.17±0.28 Aa 

168 -0.32±0.04Aa -0.43±0.03 Aa  -0.87±0.06 Aa -1.27±0.14 Aa 

215 -0.33±0.06Aa -0.42±0.07 Aa   -1.27±0.03 Aa -1.27±0.13 Aa 

222 -0.33±0.06Aa -0.40±0.02 Aa  -0.83±0.12 Aa -1.37±0.15 Ab 

226 -0.27±0.04Aa -0.42±0.01 Aa  -0.75±0.10 Aa -0.97±0.20 Aa 

298 -0.35±0.07Aa -0.42±0.06 Aa  -0.78±0.20 Aa -1.03±0.14 Aa 

299 -0.35±0.08Aa -0.52±0.04 Aa   -0.87±0.06 Aa -1.00±0.17 Aa 

Mean values of three replicates (± standard error, n = 3). Lower case letters indicate significant differences between 
treatments within each genotype by the F-test and upper-case letters indicate significant differences by genotypes within 
each treatment by the Scott-Knott test. 
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DISCUSSION 
 
There have been consistent proofs of the occurrence of a low level of drought-

induced C3-CAM change in leaves and stem of J. curcas, since the early reports based on 
high transpiration efficiency (Maes et al., 2009), as well as quantum yield of carbon 
assimilation lower than in other C3 species (Rajaona et al., 2013). Other evidence includes, 
nocturnal increase of titratable acidity in samples of leaf and stem of water stressed plants, 
changes in gas exchange patterns during night period (Winter and Holtum, 2015). 

Several mechanisms to avoid dehydration of plant tissues when they undergo water 
scarcity conditions were demonstrated. Among these, the reduction of leaf area (LA), 
which, in this study explains the increase in SLA in certain genotypes (215, 222 and 299). 
This reduction may be a mechanism to decrease the transpiratory surface and to maintain 
the tissues necessary for survival during the period of water scarcity. A negative effect of 
water deficit on leaf area has been reported by Santana et al (2015).  

Water deficit is known to cause negative effects on cell expansion and 
photosynthesis, which in turn cause a reduction in plant growth (Zhu, 2001). Diameter at 
collar and height were also affected by WS, as have been demonstrated in other studies 
(Achten et al., 2010b; Santana et al., 2015). Significant decreases in height (20%) and 
diameter (10%) in plants of J. curcas submitted to a water deficit (40% of field capacity, 
considered by the authors as moderate) for 42 days have been reported (Achten et al., 
2010b). In addition, decreases of 33.4 (height) and 14.6% (diameter) were reported in J. 
curcas grown under water deficit for 66 days (Santana et al., 2015).  

The decrease in water availability (50% of TC) did not change the leaf water 
potential (Ψw) among the treatments, except for genotype 222 for Ψmd (Table 3). Control 
of Ψw, which practically does not vary with the decrease of soil water potential, is a main 
characteristic of plants with high water content in succulent stems, as J. curcas (Santana et 
al., 2015). Moreover, strategies for carbon gain in plants that present such “buffered” leaf 
water status might be associated to increased magnitude of CAM, through the accumulation 
of organic acids and PEPC activity, as observed here and elsewhere (Cushman and Borland, 
2002, Griffiths et al., 2008, Davies and Griffiths, 2012). 

The decrease of the SLA in some genotypes was due to drought-induced decrease in 
leaf expansion. The SLA serves as a useful indicator of how plants invest carbon and 
nutrients (dry biomass) in a particular area of the leaf that is intercepted by light 
(Vendramini et al., 2002). Species with lower SLA may have to resort to higher efforts for 
light interception (Poorter, 2009), a strategy that is common in species that inhabit 
environments where drought and/or nutrient limitations can hinder growth.  Thus, a low 
SLA may be an indicative that predisposes an adjustment in the anatomy of J. curcas for a 
development of CAM in limited water habitats. 

Major changes in PEPC activity, the main carboxylating enzyme in CAM, have 
been detected in leaf and stem samples of J. curcas in the present investigation The PEPC 
activity was more responsive to WS at the apex of stem when compared to the other 
samples, even though there were no significant differences among the genotypes and 
between WS treatments (Figure 4). There was an increase in foliar PEPC activity at dusk 
(16 h) in relation to 4 h. Decreased activity at the start of the day would result from the 
inhibition of malate which is decarboxylated in the cytosol. The increase of foliar activity at 
16 h in relation to 4 h reached 91% when submitted to WS as compared to control plants. In 

http://www.funpecrp.com.br


©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 18 (2): gmr18228 

 
 
 
 
 
 
 
 

L.D. Silva et al.                                   14 

 

this case, acid accumulation may have started after 16 h and finished before 4 h. It is worthy 
note that, while the dark CO2 fixation and the associated accumulation of malic acid may be 
unique to CAM, PEP carboxylation and accumulation and decarboxylation cycles of the 
malate anion are not, which may be important, for example, to the maintenance of charge 
balance during processes such as NO3 reduction and changes in stomatal aperture 
(Martinoia et al., 2012). In addition, Freschi et al. (2010a) also demonstrated an increase in 
PEPC activity during the dark period in separate leaves of G. monostachia. In light of this, 
transcription, translation and post-translation of PEPC are likely to show variations during a 
daytime cycle. 

The CAM can operate in four ways: obligatory CAM with nocturnal accumulation 
of organic acids and fixation of CO2 during the day; facultative CAM with the fixation of 
CO2 as in the C3 metabolism (RUBISCO) under favorable environmental conditions with 
CAM behavior in unfavorable environmental conditions; CAM cycling, with daytime CO2 
fixation (no stomata opening at night) and nocturnal accumulation of this gas and of organic 
acids, and finally CAM idling characterized by a small nocturnal accumulation of organic 
acids and the closure of the stomata during the entire daytime cycle. In this last mode of 
operation, the species use CO2 from respiration and photorespiration, which is recycled for 
the synthesis of organic molecules and for the maintenance of the photosynthetic apparatus 
(Freschi et al., 2010a). CAM cycling mode has been viewed as the first stage in the shift 
from C3 to CAM that occurs as leaf age, or in response to water stress in facultative CAM 
species (Cushman and Borland, 2002). Many species perform only such initial stage of 
CAM, in which the recapture of respiratory CO2 at night allows the maintenance of a 
positive carbon balance during frequent episodes of drought (Dodd et al., 2002). 

In facultative species, CAM can be induced by environmental factors such as 
drought (Freschi et al., 2010a). The extent of CAM expression in J. curcas was also 
evaluated by analyzing the changes in titratable acidity (H+) in the leaves, as expressed by 
the estimated content of malate and citrate (Figures 5). Titratable acidity (H+) can differ 
more than 100-fold among species. In facultative CAM species, the values can range from 
1000-1500 µmol H+ g-1 FW in some species of Clusia at the onset of the dry season 
(Borland et al., 1992). Values around 150 µmol H+ g-1 FW have been measured in inducible 
CAM species such as Mesembryanthemum. crystallinum (Davies and Griffiths, 2012).  

Two main organic acids (malate and citrate) were estimated in the present 
experiment from the measurements of titratable acidity. The accumulation of citrate, as 
observed here in samples collected at 4 h, is intriguing, since the role of citrate 
accumulation in carbon or water balance during CAM is not yet clear (Lüttge, 2007). Citrate 
does not provide net gain in CO2 just as malate does, but is more effective than malate by 
increasing the internal carbon concentration (Ci) during the day because the 
decarboxylation of 1 mol of citrate generates 3 mols of CO2 in comparison to only 1 mol in 
the case of malate (Lüttge, 2006). However, the formation of citrate overnight would not 
result in a net gain in CO2, as this is not produced from a carboxylation reaction and 
therefore its precursors have the same number of carbons than the acid (Lüttge, 2006). It is 
worthy note that, in addition to serving as a CO2-storage medium, the organic acids 
accumulated at night have been suggested to be an osmotic adjustment component, aiming 
to maintain leaf water status, thus facilitating the absorption of water at dawn or helping to 
remobilize water from older leaves (Smith and Lüttge, 1985) or from the succulent stem, as 
suggested here for J. curcas. The drought-induced osmotic adjustment was reported in J. 
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curcas as a component of the drought tolerance mechanism (Silva et al., 2016). However, 
the nocturnal accumulation of citrate was observed in M. crystallinum. (Freschi et al., 
2010b). 

The induction of CAM (the amount of malic acid accumulated during the dark 
period) has been related to leaf succulence (Cushman and Borland, 2002). In a specific 
CAM cycling species of Euphorbiaceae (Euphorbia milii), the average leaf ΔH+ and 
succulence was 18 µmol.g-1 MF and 0.45 kg.m-2, respectively with no match between 
changes in H+ and changes in leaf succulence, which remained relatively constant during 
the dry treatment period (Herrera, 2013). 

A previous study of Guzmania monostachia plants showed the CAM pathway 
modulation in response to changes in water availability (Freschi et al., 2010b). The authors 
observed remarkable levels of nocturnal H+ accumulation in the apical portion of 
intermediate leaves of well-irrigated plants of this type of bromeliad, suggesting some level 
of CAM even when the water supply was abundant. In fact, the water deficit induced H+ 
increase exclusively in the apical leaf portion, where most activities of CAM-related 
enzymes, such as PEPC, have also been observed 

The quantification of δ13C performed on leaves demonstrated that the evidences of 
CAM in J. curcas were relatively low, with values ranging from -26.2 and -37.8 ‰ for the 
plants of J. curcas submitted to WS. In a study with 23 facultative CAM species, the 
average, maximum and minimum δ13C values were -23.9, -14.0 and -30.0 ‰ respectively, 
indicating that the variability in δ13C values may lead researchers to classify a species as a 
C3, facultative or constitutive MAC (Herrera, 2009). Moreover, several species of 
bromeliads were classified within a range of δ13C, where values more negative than −20‰ 
were typical of predominantly daytime carbon fixation via the C3 pathway whereas values 
less negative than −20‰ indicated predominantly nocturnal fixation of carbon via the CAM 
pathway (Crayn et al., 2015). Present results put J. curcas in two groups, where a slight C3-
CAM metabolism for certain genotypes and purely C3 for the others can be distinguished 
(Table 4).  

Increase of total soluble sugars in all plants under WS, as observed here, can be 
explained by hydrolysis of the starch under stress induction, thus restricting the 
translocation of sucrose from leaves and inducing lower use of assimilates for growth 
(McCormick et al., 2009). According to Kramer and Boyer (1995), when subjected to 
drought, several species present a reduction in starch concentration to form soluble sugars, 
i.e. the decrease in starch concentration is accompanied by an increase in carbohydrate 
concentration. It can be inferred that the higher sugar content contributed to the protection 
against tissue dehydration, functioning as a cell membrane stabilizer and helping to 
maintain turgor. In addition, a higher production of soluble sugars may be required to 
maintain the pool of phosphoenolpyruvate and consequently the CAM activity. 

CONCLUSIONS 
 
Water deficit induced metabolic changes in the leaves of J. curcas, as indicated by 

acidification of the leaf extract, both at 4 h and at 16 h along with increase of PEPC activity. 
Moreover, high values of H+ found in control plants suggest that some level of CAM may 
occur even under constant irrigation. However, the magnitude of CAM expression in J. 
curcas may be considered low. Severe reduction of growth, as observed here, suggest that 
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induction of CAM in J. curcas is more important for water conservation than for carbon 
acquisition, as demonstrated for another Euphorbiaceae (Herrera, 2013). Nevertheless, the 
matter still remains under debate as low level of CAM detected in J. curcas has already 
been related to the maintenance of the carbon balance (Winter and Holtum, 2015).  

Genotypes 121, 148 and 299 can be considered more drought-tolerant than the 
others, mainly because of higher accumulations of organic acids, higher PEPC activity, 
higher TSS content and higher root growth. 
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