Benefits of dedifferentiated stem cells for neural regeneration

Abstract

Dedifferentiation, as one of the mechanisms rerouting cell fate, regresses cells from a differentiated status to a more primitive one. Due to its potential of amplifying the stem/progenitor cell pool and reproducing sizable and desirable cellular elements, it has been attended in the field of regenerative medicine, which will hopefully provide novel therapeutic strategies for currently incurable diseases, such as varieties of central nervous system (CNS) diseases and injuries. In this article, we will first discuss naturally occurring and experimentally induced dedifferentiation, and then set forth principles in stem-cell based therapy in the neural field; beyond that, we will introduce two recent studies that show dedifferentiated stem cells contribute to neural regeneration. Moreover, we also present our recent research results of dedifferentiated muscle stem cells for neurogenic differentiation study in vitro. Further work will be conducted to elucidate the mechanism underlying the dedifferentiation process to facilitate the development of new strategies in regenerative medicine.

Share and Cite:

Tang, Y. , Xu, W. , Pan, H. , Li, S. and Li, Y. (2012) Benefits of dedifferentiated stem cells for neural regeneration. Stem Cell Discovery, 2, 108-121. doi: 10.4236/scd.2012.23016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Driesch, H. (1902) Studien über das regulationsverm?gen der Organismen. 6. Die restitution der Clavellina lepadiformis. Archiv für Entwicklungs mechanik, 14, 247-287. Hdoi:10.1007/BF02162039
[2] Poss, K.D., Wilson, L.G. and Keating, M.T. (2002) Heart regeneration in zebrafish. Science, 298, 2188-2190. Hdoi:10.1126/science.1077857
[3] Jopling, C. (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464, 606-609. Hdoi:10.1038/nature08899
[4] Kikuchi, K. (2010) Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature, 464, 601-605. Hdoi:10.1038/nature08804
[5] Raya, A. (2003) Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proceedings of the National Academy of Sciences of USA, 100, 11889-11895. Hdoi:10.1073/pnas.1834204100
[6] Sleep, E. (2010) Transcriptomics approach to investigate zebrafish heart regeneration. Journal of Cardiovasc Medicine, 11, 369-380. Hdoi:10.2459/JCM.0b013e3283375900
[7] Lien, C.L., Schebesta, M., Makino, S., Weber, G.J. and Keating, M.T. (2006) Gene expression analysis of zebrafish heart regeneration. PLoS Biology, 4, e260. Hdoi:10.1371/journal.pbio.0040260
[8] Lepilina, A. (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 127, 607-619. Hdoi:10.1016/j.cell.2006.08.052
[9] Ahuja, P., Sdek, P. and MacLellan, W.R. (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiological Reviews, 87, 521-544. Hdoi:10.1152/physrev.00032.2006
[10] Brockes, J.P. and Kumar, A. (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Reviews Molecular Cell Biology, 3, 566-574. Hdoi:10.1038/nrm881
[11] Echeverri, K., Clarke, J.D. and Tanaka, E.M. (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Developmental Biology, 236, 151-164. Hdoi:10.1006/dbio.2001.0312
[12] Odelberg, S.J., Kollhoff, A. and Keating, M.T. (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell, 103, 1099-1109. Hdoi:10.1016/S0092-8674(00)00212-9
[13] Brockes, J.P. and Kumar, A. (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science, 310, 1919-1923. Hdoi:10.1126/science.1115200
[14] Lo, D.C., Allen, F. and Brockes, J.P. (1993) Reversal of muscle differentiation during urodele limb regeneration. Proceedings of the National Academy of Sciences of USA, 90, 7230-7234. Hdoi:10.1073/pnas.90.15.7230
[15] Kumar, A., Velloso, C.P., Imokawa, Y. and Brockes, J.P. (2004) The regenerative plasticity of isolated urodele myofibers and its dependence on MSX1. PLoS Biology, 2, e218. Hdoi:10.1371/journal.pbio.0020218
[16] Kragl, M. (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature, 460, 60-65. Hdoi:10.1038/nature08152
[17] Nye, H.L., Cameron, J.A., Chernoff, E.A. and Stocum, D.L. (2003) Regeneration of the urodele limb: A review. Developmental Dynamics, 226, 280-294. Hdoi:10.1002/dvdy.10236
[18] Chen, Z.L., Yu, W.M. and Strickland, S. (2007) Peripheral regeneration. Annual Review of Neuroscience, 30, 209-233. Hdoi:10.1146/annurev.neuro.30.051606.094337
[19] Woodhoo, A. (2009) Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nature Neuroscience, 12, 839-847. Hdoi:10.1038/nn.2323
[20] Mirsky, R. (2008) Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. Journal of the Peripheral Nervous System, 13, 122-135. Hdoi:10.1111/j.1529-8027.2008.00168.x
[21] Monje, P.V., Soto, J., Bacallao, K. and Wood, P.M. (2010) Schwann cell dedifferentiation is independent of mitogenic signaling and uncoupled to proliferation: Role of cAMP and JNK in the maintenance of the differentiated state. The Journal of Biological Chemistry, 285, 31024-31036. Hdoi:10.1074/jbc.M110.116970
[22] Buffo, A. (2008) Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proceedings of the National Academy of Sciences of USA, 105, 3581-3586. Hdoi:10.1073/pnas.0709002105
[23] Pekny, M. and Nilsson, M. (2005) Astrocyte activation and reactive gliosis. Glia, 50, 427-434. Hdoi:10.1002/glia.20207
[24] Brown, A.M. and Ransom, B.R. (2007) Astrocyte glycolgen and brain energy metabolism. Glia, 55, 1263-1271. Hdoi:10.1002/glia.20557
[25] Pekny, M. and Pekna, M. (2004). Astrocyte intermediate filaments in CNS pathologies and regeneration. The Journal of Pathology, 204, 428-437. Hdoi:10.1002/path.1645
[26] Schmid-Brunclik, N., Burgi-Taboada, C., Antoniou, X., Gassmann, M. and Ogunshola, O.O. (2008) Astrocyte responses to injury: VEGF simultaneously modulates cell death and proliferation. American Journal of Physiology —Regulatory, Integrative and Comparative Physiology, 295, R864-R873. Hdoi:10.1152/ajpregu.00536.2007
[27] Seri, B., Garcia-Verdugo, J.M., McEwen, B.S. and Alvarez-Buylla, A. (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. Journal of Neuroscience, 21, 7153-7160.
[28] Lang, B. (2004) Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience, 128, 775-783. Hdoi:10.1016/j.neuroscience.2004.06.033
[29] Buffo, A., Rolando, C. and Ceruti, S. (2010) Astrocytes in the damaged brain: Molecular and cellular insights into their reactive response and healing potential. Biochemical Pharmacology, 79, 77-89. Hdoi:10.1016/j.bcp.2009.09.014
[30] Sofroniew, M.V. and Vinters, H.V. (2010) Astrocytes: Biology and pathology. Acta Neuropathologica, 119, 7-35. Hdoi:10.1007/s00401-009-0619-8
[31] Barroca, V., Lassalle, B., Coureuil, M., Louis, J.P., Le Page, F., Testart, J., Allemand, I., Riou, L. and Fouchet, P. (2009). Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nature Cell Biology, 11, 190-196. Hdoi:10.1038/ncb1826
[32] Brawley, C. and Matunis, E. (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304, 1331-1334. Hdoi:10.1126/science.1097676
[33] Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R.E. and Yoshida, S. (2010) Functional hierarchy and reversebility within the murine spermatogenic stem cell compartment. Science, 328, 62-67. Hdoi:10.1126/science.1182868
[34] Mu, X., Peng, H., Pan, H., Huard, J. and Li, Y. (2011) Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a Cre-Lox system. PloS One, 6, Article ID e16699. Hdoi:10.1371/journal.pone.0016699
[35] McGann, C.J., Odelberg, S.J. and Keating, M.T. (2001) Mammalian myotube dedifferentiation induced by newt regeneration extract. Proceedings of the National Academy of Sciences of USA, 98, 13699-13704. Hdoi:10.1073/pnas.221297398
[36] Rosania, G.R., Chang, Y.T., Perez, O., Sutherlin, D., Dong, H., Lockhart, D.J. and Schultz, P.G. (2000) Myoseverin, a microtubule-binding molecule with novel cellular effects. Nature Biotechnology, 18, 304-308. Hdoi:10.1038/73753
[37] Chen, S., Zhang, Q., Wu, X., Schultz, P.G. and Ding, S. (2004) Dedifferentiation of lineage-committed cells by a small molecule. Journal of the American Chemical Society, 126, 410-411. Hdoi:10.1021/ja037390k
[38] Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663-676. Hdoi:10.1016/j.cell.2006.07.024
[39] Okita, K., Ichisaka, T. and Yamanaka, S. (2007) Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313-317. Hdoi:10.1038/nature05934
[40] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861-872. Hdoi:10.1016/j.cell.2007.11.019
[41] Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W. and Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451, 141-146. Hdoi:10.1038/nature06534
[42] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Anto0siewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917-1920. Hdoi:10.1126/science.1151526
[43] Ramon y Cajal, S. (1913) Degeneration and regeneration of the nervous system. Oxford Univ Press, London, 1913.
[44] Colucci-D’Amato, L., Bonavita, V. and di Porzio, U. (2006). The end of the central dogma of neurobiology: Stem cells and neurogenesis in adult CNS. Neurological Sciences, 27, 266-270. Hdoi:10.1007/s10072-006-0682-z
[45] Gross, C.G. (2000) Neurogenesis in the adult brain: Death of a dogma. Nature Reviews Neuroscience, 1, 67-73. Hdoi:10.1038/35036235
[46] Davies, S.J., Fitch, M.T., Memberg, S.P., Hall, A.K., Raisman, G. and Silver, J. (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature, 390, 680-683.
[47] Nishio, T. (2009) Axonal regeneration and neural network reconstruction in mammalian CNS. Journal of Neurology, 256, 306-309. Hdoi:10.1007/s00415-009-5244-x
[48] Liu, K., Tedeschi, A., Park, K.K. and He, Z. (2011) Neuronal intrinsic mechanisms of axon regeneration. Annual Review of Neuroscience, 34, 131-152. Hdoi:10.1146/annurev-neuro-061010-113723
[49] Altman, J. and Das, G.D. (1965) Autoradiographic and histological evidence of postnatal hippo campal neurogenesis in rats. The Journal of Comparative Neurology, 124, 319-335. Hdoi:10.1002/cne.901240303
[50] Altman, J. (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. The Journal of Comparative Neurology, 137, 433-457. Hdoi:10.1002/cne.901370404
[51] Altman, J. (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. The Anatomical Record, 145, 573-591. Hdoi:10.1002/ar.1091450409
[52] Miller, M.W. and Nowakowski, R.S. (1988) Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Research, 457, 44-52. Hdoi:10.1016/0006-8993(88)90055-8
[53] Taupin, P. (2007) Protocols for studying adult neurogenesis: Insights and recent developments. Regenerative Medicine, 2, 51-62. Hdoi:10.2217/17460751.2.1.51
[54] Gould, E., Reeves, A.J., Graziano, M.S. and Gross, C.G. (1999) Neurogenesis in the neocortex of adult primates. Science, 286, 548-552. Hdoi:10.1126/science.286.5439.548
[55] Lendahl, U., Zimmerman, L.B. and McKay, R.D. (1990) CNS stem cells express a new class of intermediate filament protein. Cell, 60, 585-595. Hdoi:10.1016/0092-8674(90)90662-X
[56] Mullen, R.J., Buck, C.R. and Smith, A.M. (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development, 116, 201-211.
[57] Bonfanti, L. (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Progress in Neurobiology, 80, 129-164. Hdoi:10.1016/j.pneurobio.2006.08.003
[58] Dhaliwal, J. and Lagace, D.C. (2011) Visualization and genetic manipulation of adult neurogenesis using transgenic mice. European Journal of Neuroscience, 33, 1025-1036. Hdoi:10.1111/j.1460-9568.2011.07600.x
[59] Yamaguchi, M., Saito, H., Suzuki, M. and Mori, K. (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. NeuroReport, 11, 1991-1996. Hdoi:10.1097/00001756-200006260-00037
[60] Imayoshi, I., Sakamoto, M. and Kageyama, R. (2011) Genetic methods to identify and manipulate newly born neurons in the adult brain. Frontiers in Neuroscience, 5, 64. Hdoi:10.3389/fnins.2011.00064
[61] Reynolds, B.A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707-1710. Hdoi:10.1126/science.1553558
[62] Gage, F.H. (2000) Mammalian neural stem cells. Science, 287, 1433-1438. Hdoi:10.1126/science.287.5457.1433
[63] Temple, S. (2001) The development of neural stem cells. Nature, 414, 112-117. Hdoi:10.1038/35102174
[64] Ming, G.L. and Song, H. (2011) Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70, 687-702. Hdoi:10.1016/j.neuron.2011.05.001
[65] Ming, G.L. and Song, H. (2005) Adult neurogenesis in the mammalian central nervous system. Annual Review of Neuroscience, 28, 223-250. Hdoi:10.1146/annurev.neuro.28.051804.101459
[66] Kempermann, G. and Gage, F.H. (2000) Neurogenesis in the adult hippocampus. Novartis Foundation Symposium, 231, 220-235, 235-241, 302-226.
[67] Alvarez-Buylla, A. and Garcia-Verdugo, J.M. (2002) Neurogenesis in adult subventricular zone. The Journal of Neuroscience, 22, 629-634.
[68] Shihabuddin, L.S., Horner, P.J., Ray, J. and Gage, F.H. (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. The Journal of Neuroscience, 20, 8727-8735.
[69] Horner, P.J., Power, A.E., Kempermann, G., Kuhn, H.G., Palmer, T.D., Winkler, J., Thal, L.J. and Gage, F.H. (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. The Journal of Neuroscience, 20, 2218-2228.
[70] Dayer, A.G., Cleaver, K.M., Abouantoun, T. and Cameron, H.A. (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. The Journal of Cell Biology, 168, 415-427. Hdoi:10.1083/jcb.200407053
[71] Gould, E., Reeves, A.J., Graziano, M.S. and Gross, C.G. (1999) Neurogenesis in the neocortex of adult primates. Science, 286, 548-552. Hdoi:10.1126/science.286.5439.548
[72] Gould, E., Vail, N., Wagers, M. and Gross, C.G. (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proceedings of the National Academy of Sciences of USA, 98, 10910-10917. Hdoi:10.1073/pnas.181354698
[73] Richardson, W.D., Young, K.M., Tripathi, R.B. and McKenzie, I. (2011) NG2-glia as multipotent neural stem cells: Fact or fantasy? Neuron, 70, 661-673. Hdoi:10.1016/j.neuron.2011.05.013
[74] Rivers, L.E., Young, K.M., Rizzi, M., Jamen, F., Psachoulia, K., Wade, A., Kessaris, N. and Richardson, W.D. (2008). PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nature Neuroscience, 11, 1392-1401. Hdoi:10.1038/nn.2220
[75] Guo, F., Maeda, Y., Ma, J., Xu, J., Horiuchi, M., Miers, L., Vaccarino, F. and Pleasure, D. (2010) Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. The Journal of Neuroscience, 30, 12036-12049. Hdoi:10.1523/JNEUROSCI.1360-10.2010
[76] Gould, E. (2007) How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience, 8, 481-488. Hdoi:10.1038/nrn2147
[77] Breunig, J.J., Arellano, J.I., Macklis, J.D. and Rakic, P. (2007) Everything that glitters isn’t gold: A critical review of postnatal neural precursor analyses. Cell Stem Cell, 1, 612-627. Hdoi:10.1016/j.stem.2007.11.008
[78] Nakatomi, H., Kuriu, T., Okabe, S., Yamamoto, S., Hatano, O., Kawahara, N., Tamura, A., Kirino, T. and Nakafuku, M. (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 110, 429-441. Hdoi:10.1016/S0092-8674(02)00862-0
[79] Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. and Lindvall, O. (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8, 963-970. Hdoi:10.1038/nm747
[80] Thored, P., Arvidsson, A., Cacci, E., Ahlenius, H., Kallur, T., Darsalia, V., Ekdahl, C.T., Kokaia, Z. and Lindvall, O. (2006). Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells, 24, 739-747. Hdoi:10.1634/stemcells.2005-0281
[81] Kernie, S.G. and Parent, J.M. (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiology of Disease, 37, 267-274. Hdoi:10.1016/j.nbd.2009.11.002
[82] Enciu, A.M., Nicolescu, M.I., Manole, C.G., Muresanu, D.F., Popescu, L.M. and Popescu, B.O. (2011) Neuroregeneration in neurodegenerative disorders. BioMedCentral Neurology, 11, 75. Hdoi:10.1186/1471-2377-11-75
[83] Winner, B., Kohl, Z. and Gage, F.H. (2011) Neurodegenerative disease and adult neurogenesis. European Journal of Neuroscience, 33, 1139-1151. Hdoi:10.1111/j.1460-9568.2011.07613.x
[84] Jiang, W., Gu, W., Brannstrom, T., Rosqvist, R. and Wester, P. (2001) Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke, 32, 1201-1207. Hdoi:10.1161/01.STR.32.5.1201
[85] Magavi, S.S., Leavitt, B.R. and Macklis, J.D. (2000) Induction of neurogenesis in the neocortex of adult mice. Nature, 405, 951-955. Hdoi:10.1038/35016083
[86] Ohira, K., Furuta, T., Hioki, H., Nakamura, K.C., Kuramoto, E., Tanaka, Y., Funatsu, N., Shimizu, K., Oishi, T., Hayashi, M., et al. (2010) Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nature Neuroscience, 13, 173-179. Hdoi:10.1038/nn.2473
[87] Benraiss, A., Chmielnicki, E., Lerner, K., Roh, D. and Goldman, S.A. (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. The Journal of Neuroscience, 21, 6718-6731.
[88] Van Kampen, J.M., Hagg, T. and Robertson, H.A. (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. European Journal of Neuroscience, 19, 2377-2387. Hdoi:10.1111/j.0953-816X.2004.03342.x
[89] Pencea, V., Bingaman, K.D., Wiegand, S.J. and Luskin, M.B. (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. The Journal of Neuroscience, 21, 6706-6717.
[90] Park, J.H., Cho, H., Kim, H. and Kim, K. (2006) Repeated brief epileptic seizures by pentylenetetrazole cause neurodegeneration and promote neurogenesis in discrete brain regions of freely moving adult rats. Neuroscience, 140, 673-684. Hdoi:10.1016/j.neuroscience.2006.02.076
[91] Kokoeva, M.V., Yin, H. and Flier, J.S. (2005) Neurogenesis in the hypothalamus of adult mice: Potential role in energy balance. Science, 310, 679-683. Hdoi:10.1126/science.1115360
[92] Migaud, M., Batailler, M., Segura, S., Duittoz, A., Franceschini, I. and Pillon, D. (2010) Emerging new sites for adult neurogenesis in the mammalian brain: A comparative study between the hypothalamus and the classical neurogenic zones. European Journal of Neuroscience, 32, 2042-2052. Hdoi:10.1111/j.1460-9568.2010.07521.x
[93] Zhao, M., Momma, S., Delfani, K., Carlen, M., Cassidy, R.M., Johansson, C.B., Brismar, H., Shupliakov, O., Frisen, J. and Janson, A.M. (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proceedings of the National Academy of Sciences of USA, 100, 7925-7930. Hdoi:10.1073/pnas.1131955100
[94] Van Kampen, J.M. and Robertson, H.A. (2005) A possible role for dopamine D3 receptor stimulation in the induction of neurogenesis in the adult rat substantia nigra. Neuroscience, 136, 381-386. Hdoi:10.1016/j.neuroscience.2005.07.054
[95] Zheng, Y., Begum, S., Zhang, C., Fleming, K., Masumura, C., Zhang, M., Smith, P. and Darlington, C. (2011) Increased BrdU incorporation reflecting DNA repair, neuronal de-differentiation or possible neurogenesis in the adult cochlear nucleus following bilateral cochlear lesions in the rat. Experimental Brain Research, 210, 477-487. Hdoi:10.1007/s00221-010-2491-0
[96] Charrier, C., Coronas, V., Fombonne, J., Roger, M., Jean, A., Krantic, S. and Moyse, E. (2006) Characterization of neural stem cells in the dorsal vagal complex of adult rat by in vivo proliferation labeling and in vitro neurosphere assay. Neuroscience, 138, 5-16. Hdoi:10.1016/j.neuroscience.2005.10.046
[97] Fagerlund, M., Jaff, N., Danilov, A.I., Peredo, I., Brundin, L. and Svensson, M. (2011) Proliferation, migration and differentiation of ependymal region neural progenitor cells in the brainstem after hypoglossal nerve avulsion. Restorative Neurology and Neuroscience, 29, 47-59.
[98] Okano, H., Sakaguchi, M., Ohki, K., Suzuki, N. and Sawamoto, K. (2007) Regeneration of the central nervous system using endogenous repair mechanisms. Journal of Neurochemistry, 102, 1459-1465. Hdoi:10.1111/j.1471-4159.2007.04674.x
[99] Robel, S., Berninger, B. and Gotz, M. (2011) The stem cell potential of glia: Lessons from reactive gliosis. Nature Reviews Neuroscience, 12, 88-104. Hdoi:10.1038/nrn2978
[100] Benchoua, A. and Onteniente, B. (2011) Intracerebral transplantation for neurological disorders. Lessons from developmental, experimental, and clinical studies. Frontiers in Cellular Neuroscience, 6, 2.
[101] Martino, G. and Pluchino, S. (2006) The therapeutic potential of neural stem cells. Nature Reviews Neuroscience, 7, 395-406. Hdoi:10.1038/nrn1908
[102] Schouten, J.W., Fulp, C.T., Royo, N.C., Saatman, K.E., Watson, D.J., Snyder, E.Y., Trojanowski, J.Q., Prockop, D.J., Maas, A.I. and McIntosh, T.K. (2004) A review and rationale for the use of cellular transplantation as a therapeutic strategy for traumatic brain injury. Journal of Neurotrauma, 21, 1501-1538. Hdoi:10.1089/neu.2004.21.1501
[103] Enzmann, G.U., Benton, R.L., Talbott, J.F., Cao, Q. and Whittemore, S.R. (2006) Functional considerations of stem cell transplantation therapy for spinal cord repair. Journal of Neurotrauma, 23, 479-495. Hdoi:10.1089/neu.2006.23.479
[104] Liu, F., You, Y., Li, X., Ma, T., Nie, Y., Wei, B., Li, T., Lin, H. and Yang, Z. (2009) Brain injury does not alter the intrinsic differentiation potential of adult neuroblasts. The Journal of Neuroscience, 29, 5075-5087. Hdoi:10.1523/JNEUROSCI.0201-09.2009
[105] Guillemot, F. and Zimmer, C. (2011) From cradle to grave: The multiple roles of fibroblast growth factors in neural development. Neuron, 71, 574-588. Hdoi:10.1016/j.neuron.2011.08.002
[106] Chaichana, K., Zamora-Berridi, G., Camara-Quintana, J. and Quinones-Hinojosa, A. (2006) Neurosphere assays: Growth factors and hormone differences in tumor and nontumor studies. Stem Cells, 24, 2851-2857. Hdoi:10.1634/stemcells.2006-0399
[107] Bath, K.G. and Lee, F.S. (2010) Neurotrophic factor control of adult SVZ neurogenesis. Developmental Neurobiology, 70, 339-349.
[108] Hagg, T. (2009) From neurotransmitters to neurotrophic factors to neurogenesis. The Neuroscientist, 15, 20-27. Hdoi:10.1177/1073858408324789
[109] Barros, C.S., Franco, S.J. and Muller, U. (2011) Extracellular matrix: Functions in the nervous system. Cold Spring Harbor Perspectives in Biology, 3, Article ID a005108. Hdoi:10.1101/cshperspect.a005108
[110] Busch, S.A. and Silver, J. (2007) The role of extracellular matrix in CNS regeneration. Current Opinion in Neurobiology, 17, 120-127. Hdoi:10.1016/j.conb.2006.09.004
[111] Yong, V.W. (2005) Metalloproteinases: Mediators of pathology and regeneration in the CNS. Nature Reviews Neuroscience, 6, 931-944. Hdoi:10.1038/nrn1807
[112] Candelario-Jalil, E., Yang, Y. and Rosenberg, G.A. (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience, 158, 983-994. Hdoi:10.1016/j.neuroscience.2008.06.025
[113] Cunningham, L.A., Wetzel, M. and Rosenberg, G.A. (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia, 50, 329-339. Hdoi:10.1002/glia.20169
[114] Platel, J.C., Stamboulian, S., Nguyen, I. and Bordey, A. (2010) Neurotransmitter signaling in postnatal neurogenesis: The first leg. Brain Research Reviews, 63, 60-71. Hdoi:10.1016/j.brainresrev.2010.02.004
[115] O’Keeffe, G.C., Barker, R.A. and Caldwell, M.A. (2009) Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle, 8, 2888-2894. Hdoi:10.4161/cc.8.18.9512
[116] Shen, Q., Goderie, S.K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K. and Temple, S. (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338-1340. Hdoi:10.1126/science.1095505
[117] Yang, X.T., Bi, Y.Y. and Feng, D.F. (2011) From the vascular microenvironment to neurogenesis. Brain Research Bulletin, 84, 1-7. Hdoi:10.1016/j.brainresbull.2010.09.008
[118] Quaegebeur, A., Lange, C. and Carmeliet, P. (2011) The neurovascular link in health and disease: Molecular mechanisms and therapeutic implications. Neuron, 71, 406-424. Hdoi:10.1016/j.neuron.2011.07.013
[119] Rolls, A., Shechter, R. and Schwartz, M. (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci, 10, 235-241. Hdoi:10.1038/nrn2591
[120] Silver, J. and Miller, J.H. (2004) Regeneration beyond the glial scar. Nature Reviews Neuroscience, 5, 146-156. Hdoi:10.1038/nrn1326
[121] Okouchi, M., Ekshyyan, O., Maracine, M. and Aw, T.Y. (2007) Neuronal apoptosis in neurodegeneration. Antioxidants & Redox Signaling, 9, 1059-1096. Hdoi:10.1089/ars.2007.1511
[122] Bauer, S. and Patterson, P.H. (2005) The cell cycleapoptosis connection revisited in the adult brain. The Journal of Cell Biology, 171, 641-650. Hdoi:10.1083/jcb.200505072
[123] Carpentier, P.A. and Palmer, T.D. (2009) Immune influence on adult neural stem cell regulation and function. Neuron, 64, 79-92. Hdoi:10.1016/j.neuron.2009.08.038
[124] Russo, I., Barlati, S. and Bosetti, F. (2011) Effects of neuroinflammation on the regenerative capacity of brain stem cells. Journal of Neurochemistry, 116, 947-956. Hdoi:10.1111/j.1471-4159.2010.07168.x
[125] Kuhn, H.G., Dickinson-Anson, H. and Gage, F.H. (1996) Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neurochemistry, 16, 2027-2033.
[126] Driscoll, I., Howard, S.R., Stone, J.C., Monfils, M.H., Tomanek, B., Brooks, W.M. and Sutherland, R.J. (2006) The aging hippocampus: A multi-level analysis in the rat. Neuroscience, 139, 1173-1185. Hdoi:10.1016/j.neuroscience.2006.01.040
[127] Cao, Q., He, Q., Wang, Y., Cheng, X., Howard, R.M., Zhang, Y., DeVries, W.H., Shields, C.B., Magnuson, D.S., Xu, X.M., et al. (2010) Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. Journal of Neurochemistry, 30, 2989-3001. Hdoi:10.1523/JNEUROSCI.3174-09.2010
[128] Hayon, Y., Dashevsky, O., Shai, E., Varon, D. and Leker, R.R. (2012) Platelet microparticles promote neural stem cell proliferation, survival and differentiation. Journal of Molecular Neuroscience, 47, 659-665.
[129] Bambakidis, N.C., Petrullis, M., Kui, X., Rothstein, B., Karampelas, I., Kuang, Y., Selman, W.R., Lamanna, J.C. and Miller, R.H. (2012) Improvement of neurological recovery and stimulation of neural progenitor cell proliferation by intrathecal administration of sonic hedgehog. Journal of Neurosurgery, 116, 1114-1120. Hdoi:10.3171/2012.1.JNS111285
[130] Ekdahl, C.T., Claasen, J.H., Bonde, S., Kokaia, Z. and Lindvall, O. (2003) Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences of USA, 100, 13632-13637. Hdoi:10.1073/pnas.2234031100
[131] Edwards, P., Arango, M., Balica, L., Cottingham, R., El-Sayed, H., Farrell, B., Fernandes, J., Gogichaisvili, T., Golden, N., Hartzenberg, B., et al. (2005) Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injuryoutcomes at 6 months. The Lancet, 365, 1957-1959. Hdoi:10.1016/S0140-6736(05)66552-X
[132] Monje, M.L., Toda, H. and Palmer, T.D. (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science, 302, 1760-1765. Hdoi:10.1126/science.1088417
[133] Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C. and Becerril, J.J. (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. The New England Journal of Medicine, 316, 831-834. Hdoi:10.1056/NEJM198704023161402
[134] Bachoud-Levi, A.C., Gaura, V., Brugieres, P., Lefaucheur, J.P., Boisse, M.F., Maison, P., Baudic, S., Ribeiro, M.J., Bourdet, C., Remy, P., et al. (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: A long-term follow-up study. The Lancet Neurology, 5, 303-309. Hdoi:10.1016/S1474-4422(06)70381-7
[135] Freed, C.R., Greene, P.E., Breeze, R.E., Tsai, W.Y., DuMouchel, W., Kao, R., Dillon, S., Winfield, H., Culver, S., Trojanowski, J.Q., et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. The New England Journal of Medicine, 344, 710-719. Hdoi:10.1056/NEJM200103083441002
[136] Olanow, C.W., Goetz, C.G., Kordower, J.H., Stoessl, A.J., Sossi, V., Brin, M.F., Shannon, K.M., Nauert, G.M., Perl, D.P., Godbold, J., et al. (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Annals of Neurology, 54, 403-414. Hdoi:10.1002/ana.10720
[137] Johe, K.K., Hazel, T.G., Muller, T., Dugich-Djordjevic, M.M. and McKay, R.D. (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes & Development, 10, 3129-3140. Hdoi:10.1101/gad.10.24.3129
[138] Tamaki, S.J., Jacobs, Y., Dohse, M., Capela, A., Cooper, J.D., Reitsma, M., He, D., Tushinski, R., Belichenko, P.V., Salehi, A., et al. (2009) Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell, 5, 310-319. Hdoi:10.1016/j.stem.2009.05.022
[139] Miljan, E.A. and Sinden, J.D. (2009) Stem cell treatment of ischemic brain injury. Current Opinion in Molecular Therapeutics, 11, 394-403.
[140] Zhu, J., Zhou, L. and XingWu, F. (2006) Tracking neural stem cells in patients with brain trauma. The New England Journal of Medicine, 355, 2376-2378. Hdoi:10.1056/NEJMc055304
[141] Amariglio, N., Hirshberg, A., Scheithauer, B.W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., KorenMichowitz, M., Waldman, D., Leider-Trejo, L., et al. (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine, 6, Article ID e1000029. Hdoi:10.1371/journal.pmed.1000029
[142] Evans, M. (2011) Discovering pluripotency: 30 years of mouse embryonic stem cells. Nature Reviews Molecular Cell Biology, 12, 680-686. Hdoi:10.1038/nrm3190
[143] Soundararajan, P., Lindsey, B.W., Leopold, C. and Rafuse, V.F. (2007) Easy and rapid differentiation of embryonic stem cells into functional motoneurons using sonic hedgehog-producing cells. Stem Cells, 25, 1697-1706. Hdoi:10.1634/stemcells.2006-0654
[144] Lee, H., Shamy, G.A., Elkabetz, Y., Schofield, C.M., Harrsion, N.L., Panagiotakos, G., Socci, N.D., Tabar, V. and Studer, L. (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells, 25, 1931-1939. Hdoi:10.1634/stemcells.2007-0097
[145] Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., et al. (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480, 547-551.
[146] Weick, J.P., Liu, Y. and Zhang, S.C. (2011) Human em-bryonic stem cell-derived neurons adopt and regulate the activity of an established neural network. Proceedings of the National Academy of Sciences of USA, 108, 20189-20194. Hdoi:10.1073/pnas.1108487108
[147] Doi, D., Morizane, A., Kikuchi, T., Onoe, H., Hayashi, T., Kawasaki, T., Motono, M., Sasai, Y., Saiki, H., Gomi, M., et al. (2012) Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human esc-derived neural cells in a primate model of parkinson’s disease. Stem Cells, 30, 935-945.
[148] Guhr, A., Kurtz, A., Friedgen, K. and Loser, P. (2006) Current state of human embryonic stem cell research: An overview of cell lines and their use in experimental work. Stem Cells, 24, 2187-2191. Hdoi:10.1634/stemcells.2006-0053
[149] Plath, K. and Lowry, W.E. (2011) Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics, 12, 253-265. Hdoi:10.1038/nrg2955
[150] Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I., et al. (2010) Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285-290. Hdoi:10.1038/nature09342
[151] Bilic, J. and Izpisua Belmonte, J.C. (2012) Concise review: Induced pluripotent stem cells versus embryonic stem cells: Close enough or yet too far apart? Stem Cells, 30, 33-41. Hdoi:10.1002/stem.700
[152] Schwartz, P.H., Brick, D.J., Stover, A.E., Loring, J.F. and Muller, F.J. (2008) Differentiation of neural lineage cells from human pluripotent stem cells. Methods, 45, 142-158. Hdoi:10.1016/j.ymeth.2008.03.007
[153] Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C. and Wernig, M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035-1041. Hdoi:10.1038/nature08797
[154] Caiazzo, M., Dell’Anno, M.T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova, T.D., Menegon, A., Roncaglia, P., Colciago, G., et al. (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476, 224-227. Hdoi:10.1038/nature10284
[155] Kim, J., Efe, J.A., Zhu, S., Talantova, M., Yuan, X., Wang, S., Lipton, S.A., Zhang, K. and Ding, S. (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of USA, 108, 7838-7843. Hdoi:10.1073/pnas.1103113108
[156] Yang, N., Ng, Y.H., Pang, Z.P., Sudhof, T.C. and Wernig, M. (2011) Induced neuronal cells: How to make and define a neuron. Cell Stem Cell, 9, 517-525. Hdoi:10.1016/j.stem.2011.11.015
[157] Marro, S., Pang, Z.P., Yang, N., Tsai, M.C., Qu, K., Chang, H.Y., Sudhof, T.C. and Wernig, M. (2011) Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell, 9, 374-382. Hdoi:10.1016/j.stem.2011.09.002
[158] Son, E.Y., Ichida, J.K., Wainger, B.J., Toma, J.S., Rafuse, V.F., Woolf, C.J. and Eggan, K. (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell, 9, 205-218. Hdoi:10.1016/j.stem.2011.07.014
[159] Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., et al. (2011) Induction of human neuronal cells by defined transcription factors. Nature, 476, 220-223.
[160] Wislet-Gendebien, S., Wautier, F., Leprince, P. and Rogister, B. (2005) Astrocytic and neuronal fate of mesenchymal stem cells expressing nestin. Brain Research Bulletin, 68, 95-102. Hdoi:10.1016/j.brainresbull.2005.08.016
[161] Krabbe, C., Zimmer, J. and Meyer, M. (2005) Neural transdifferentiation of mesenchymal stem cells: A critical review. Acta Pathologica, Microbiologica et Immunologica, 113, 831-844. Hdoi:10.1111/j.1600-0463.2005.apm_3061.x
[162] Romero-Ramos, M., Vourch, P., Young, H.E., Lucas, P.A., Wu, Y., Chivatakarn, O., Zaman, R., Dunkelman, N., el-Kalay, M.A. and Chesselet, M.F. (2002) Neuronal differentiation of stem cells isolated from adult muscle. Journal of Neuroscience Research, 69, 894-907. Hdoi:10.1002/jnr.10374
[163] Kondo, T., Case, J., Srour, E.F. and Hashino, E. (2006) Skeletal muscle-derived progenitor cells exhibit neural competence. NeuroReport, 17, 1-4. Hdoi:10.1097/01.wnr.0000192732.00535.ff
[164] Alessandri, G., Pagano, S., Bez, A., Benetti, A., Pozzi, S., Iannolo, G., Baronio, M., Invernici, G., Caruso, A., Muneretto, C., et al. (2004) Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. The Lancet, 364, 1872-1883. Hdoi:10.1016/S0140-6736(04)17443-6
[165] Herranz, A.S., Gonzalo-Gobernado, R., Reimers, D., Asensio, M.J., Rodriguez-Serrano, M. and Bazan, E. (2010) Applications of human umbilical cord blood cells in central nervous system regeneration. Current Stem Cell Research & Therapy, 5, 17-22. Hdoi:10.2174/157488810790442822
[166] Slovinska, L., Novotna, I., Kubes, M., Radonak, J., Jergova, S., Cigankova, V., Rosocha, J. and Cizkova, D. (2011) Umbilical cord blood cells CD133+/CD133– cultivation in neural proliferation media differentiates towards neural cell lineages. Archives of Medical Research, 42, 555-562. Hdoi:10.1016/j.arcmed.2011.10.003
[167] Amoh, Y., Kanoh, M., Niiyama, S., Hamada, Y., Kawahara, K., Sato, Y., Hoffman, R.M. and Katsuoka, K. (2009) Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: An advantageous alternative to ES and iPS cells. Journal of Cellular Biochemistry, 107, 1016-1020. Hdoi:10.1002/jcb.22204
[168] Kwon, E.B., Lee, J.Y., Piao, S., Kim, I.G. and Ra, J.C. (2011) Comparison of human muscle-derived stem cells and human adipose-derived stem cells in neurogenic trans-differentiation. Korean Journal of Urology, 52, 852-857. Hdoi:10.4111/kju.2011.52.12.852
[169] Locke, M., Feisst, V. and Dunbar, P.R. (2011) Concise review: human adipose-derived stem cells: Separating promise from clinical need. Stem Cells, 29, 404-411. Hdoi:10.1002/stem.593
[170] Salem, H.K. and Thiemermann, C. (2010) Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells, 28, 585-596.
[171] Cox, C.S., Jr., Baumgartner, J.E., Harting, M.T., Worth, L.L., Walker, P.A., Shah, S.K., Ewing-Cobbs, L., Hasan, K.M., Day, M.C., Lee, D., et al. (2011) Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery, 68, 588-600. Hdoi:10.1227/NEU.0b013e318207734c
[172] Liu, Y., Jiang, X., Zhang, X., Chen, R., Sun, T., Fok, K.L., Dong, J., Tsang, L.L., Yi, S., Ruan, Y., et al. (2011) Dedifferentiation-reprogrammed mesenchymal stem cells with improved therapeutic potential. Stem Cells, 29, 2077-2089. Hdoi:10.1002/stem.764
[173] Raff, M. (2003) Adult stem cell plasticity: Fact or artifact? Annual Review of Cell and Developmental Biology, 19, 122. Hdoi:10.1146/annurev.cellbio.19.111301.143037
[174] Wagers, A.J. and Weissman, I.L. (2004) Plasticity of adult stem cells. Cell, 116, 639-648. Hdoi:10.1016/S0092-8674(04)00208-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.