Enhanced Biohydrogen Production by Accelerating the Hydrolysis of Macromolecular Components of Waste Activated Sludge Using TiO2 Photocatalysis as a Pretreatment

Abstract

The effects of TiO2 photocatalysis on the hydrolysis of protein of waste activated sludge (WAS) and its biodegradability were investigated in this study. After 12-h UV irradiation, the removal ratio of protein by TiO2 photocatalysis reached 98.1%. The optimal condition for photocatalytic degradation of protein is TiO2 dosage of 5.0 mg·L1 under 2.4 w·m2 UV light irradiation. TiO2 photocatalysis in comparison with other pretreatments obviously accelerated the hydrolysis of WAS and improved the conversion of total COD (tCOD) to soluble COD (sCOD). The sCOD/tCOD ratio of WAS pretreated by TiO2 photocatalysis, UV photolysis and TiO2 adsorption and that of the control were 92.8%, 32.5%, 18.0% and 16.6%, respectively. TiO2 photocatalytic pretreatment accelerated the biohydrogen production from 10-fold diluted WAS. The bioreactors containing UV photolysis and TiO2 adsorption pretreated WASs and the control reactor require 0.5-d, 0.9-d and 0.7-d start-up period for biohydrogen production, respectively. While the bioreactor containing TiO2 photocatalysis pretreated WAS obtained a hydrogen yield of 0.5 mL-H2/g-VS merely after 0.5-d mesophilic fermentation. The cumulative biohydrogen production from TiO2 photocatalysis pretreated WAS during 4-d mesophilic fermentation reached 11.7 mL-H2/g-VS, which was 1.2 times higher than that from the control. TiO2 photocatalytic pretreatment enhanced the biohydrogen production from WAS via accelerating the hydrolysis of its macromolecular components to smaller molecule weight hydrolysates.

Share and Cite:

D. Li, Y. Zhao, Q. Wang, Y. Yang and Z. Zhang, "Enhanced Biohydrogen Production by Accelerating the Hydrolysis of Macromolecular Components of Waste Activated Sludge Using TiO2 Photocatalysis as a Pretreatment," Open Journal of Applied Sciences, Vol. 3 No. 2, 2013, pp. 155-162. doi: 10.4236/ojapps.2013.32021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. L. Campos, L. Otero, A. Franco, A. Mosquera-Corral and E. Roca, “Ozonation Strategies to Reduce Sludge Production of a Seafood Industry WWTP,” Bioresource Technology, Vol. 100, No. 3, 2009, pp. 1069-1073. doi:10.1016/j.biortech.2008.07.056
[2] C. H. Ting and D. J. Lee, “Production of Hydrogen and Methane from Wastewater Sludge Using anaerobic Fermentation,” International Journal of Hydrogen Energy, Vol. 32, No. 6, 2007, pp. 677-682. doi:10.1016/j.ijhydene.2006.06.063
[3] E. Athanasoulia, P. Melidis and A. Aivasidis, “Optimization of Biogas Production of Waste Activated Sludge through Serial Digestion,” Renewable Energy, Vol. 47, 2012, pp. 147-151. doi:10.1016/j.renene.2012.04.038
[4] F. Morgan-Sagastume, S. Pratt, A. Karlsson, D. Cirne, P. Lant and A. Werker, “Production of Volatile Fatty Acids by Fermentation of Waste Activated Sludge Pre-Treated in Full-Scale Thermal Hydrolysis Plants,” Bioresource Technology, Vol. 102, No. 3, 2011, pp. 3089-3097. doi:10.1016/j.biortech.2010.10.054
[5] J. Clemens, M. Trimborn, P. Weiland and B. Amon, “Mi tigation of Greenhouse Gas Emissions by Anaerobic Digestion of Cattle Slurry,” Agriculture, Ecosystems Environment, Vol. 112, No. 2-3, 2006, pp. 171-177. doi:10.1016/j.agee.2005.08.016
[6] P. Kampas, S. A. Parsons, P. Pearce, S. Ledoux, P. Vale, J. Churchley and E. Cartmell, “Mechanical Sludge Disintegration for the Production of Carbon Source for Bio logical Nutrient Removal,” Water Research, Vol. 41, No. 8, 2007, pp. 1734-1742. doi:10.1016/j.watres.2006.12.044
[7] J. Laurent, M. Casellas, H. Carrere and C. Dagot, “Effects of Thermal Hydrolysis on Activated Sludge Solubilization, Surface Properties and Heavy Metals Biosorption,” Chemical Engineering Journal, Vol. 166, No. 3, 2011, pp. 841-849. doi:10.1016/j.cej.2010.11.054
[8] H. Carrere, Y. Rafrafi, A. Battimelli, M. Torrijos, J. P. Delgenes and C. Motte, “Improving Methane Production during the Codigestion of Waste-Activated Sludge and Fatty Wastewater: Impact of Thermo-Alkaline Pretreatment on Batch and Semi-Continuous Process,” Chemical Engineering Journal, Vol. 210, 2012, pp. 404-409. doi:10.1016/j.cej.2012.09.005
[9] D. C. Devlin, S. R. R. Esteves, R. M. Dinsdale and A. J. Guwy, “The Effect of Acid Pretreatment on the Anaerobic Digestion and Dewatering of Waste Activated Sludge,” Bioresource Technology, Vol. 102, No. 5, 2011, pp. 4076-4082. doi:10.1016/j.biortech.2010.12.043
[10] Y. Z. Chi, Y. Y. Li, X. N. Fei, S. P. Wang and H. Y. Yuan, “Enhancement of Thermophilic Anaerobic Digestion of Thickened Waste Activated Sludge by Combined Microwave and Alkaline Pretreatment,” Journal of Environmental Sciences, Vol. 23, No. 8, 2011, pp. 1257-1265. doi:10.1016/S1001-0742(10)60618-3
[11] H. C. Xu, P. J. He, G. H. Yu and L. M. Shao, “Effect of Ultrasonic Pretreatment on Anaerobic Digestion and Its Sludge Dewaterability,” Journal of Environmental Sciences, Vol. 23, No. 9, 2011, pp. 1472-1478.
[12] S. Sahinkaya and M. F. Sevimli, “Synergistic Effects of Sono-Alkaline Pretreatment on Anaerobic Biodegradability of Waste Activated Sludge,” Journal of Industrial and Engineering Chemistry, Vol. 19, No. 1, 2013, pp. 197-206. doi:10.1016/j.jiec.2012.08.002
[13] S. S. Yang, W. Q. Guo, G. L. Cao, H. S. Zheng and N. Q. Ren, “Simultaneous Waste Activated Sludge Disintegra tion and Biological Hydrogen Production Using an Ozone/ Ultrasound Pretreatment,” Bioresource Technology, Vol. 124, 2012, pp. 347-354. doi:10.1016/j.biortech.2012.08.007
[14] Y. Yu, W. I. Chan, P. H. Liao and K. V. Lo, “Disinfection and Solubilization of Sewage Sludge Using the Microwave Enhanced Advanced Oxidation Process,” Journal of Hazardous Material, Vol. 181, No. 1-3, 2010, pp. 1143-1147. doi:10.1016/j.jhazmat.2010.05.134
[15] L. Appels, A. V. Assche, K. Willems, J. Degreve, J. V. Impe and R. Dewil, “Peracetic Acid Oxidation as an Al ternative Pre-Treatment for the Anaerobic Digestion of Waste Activated Sludge,” Bioresource Technology, Vol. 102, No. 5, 2011, pp. 4124-4130. doi:10.1016/j.biortech.2010.12.070
[16] D. Friedmann, C. Mendive and D. Bahnemann, “TiO2 for Water Treatment: Parameters Affecting the Kinetics and Mechanisms of Photocatalysis,” Applied Catalysis B: Environment, Vol. 99, No. 3-4, 2010, pp. 398-406.
[17] R. Poblete, E. Otal, L. F. Vilches, J. Vale and C. Fernandez-Pereira, “Photocatalytic Degradation of Humic Acids and Landfill Leachate Using a Solid Industrial By-Products Containing TiO2 and Fe,” Applied Catalysis B: Environment, Vol. 102, No. 1-2, 2011, pp. 172-179.
[18] A. Fujishima, X. T. Zhang and D. Tryk, “TiO2 Photo catalysis and Related Surface Phenomena,” Surface Science Report, Vol. 63, No. 12, 2008, pp. 515-582. doi:10.1016/j.surfrep.2008.10.001
[19] S. H. Wang and S. Q. Zhou, “Photodegradation of Methyl Orange by Photocatalyst of CNTs/P-TiO2 under UV and Visible-Light Irradiation,” Journal of Hazardous Material, Vol. 185, No. 1, 2011, pp. 77-85. doi:10.1016/j.jhazmat.2010.08.125
[20] C. S. Guo, J. Xu, Y. He, Y. Zhang and Y. Q. Wang, “Photodegradation of Rhodamine B and Methyl Orange over One-Dimensional TiO2 Catalysts under Simulated Solar Irradiation,” Applied Surface Science, Vol. 257, No. 8, 2011, pp. 3798-3803. doi:10.1016/j.apsusc.2010.11.152
[21] J. A. Rengifo-Herrera, M. N. Blanco and L. R. Pizzio, “Photocatalytic Bleaching of Aqueous Malachite Green Solutions by UV-A and Blue-Light-Illuminated TiO2 Spherical Nanoparticles Modified with Tungstophosphoric Acid,” Applied Catalysis B: Environment, Vol. 110, No. 2, 2011, pp. 126-132. doi:10.1016/j.apcatb.2011.08.034
[22] G. Xue, H. H. Liu, Q. Y. Chen, C. Hills, M. Tyrer and F. Innocent, “Synergy between Surface Adsorption and Photocatalysis during Degradation of Humic Acid on TiO2/Activated Carbon Composites,” Journal of Hazardous Material, Vol. 186, No. 1, 2011, pp. 765-772. doi:10.1016/j.jhazmat.2010.11.063
[23] M. H. Ahmed, T. E. Keyes, J. A. Byrne, C. W. Black ledge and J. W. Hamilton, “Adsorption and Photocatalytic Degradation of Human Serum Albumin on TiO2 and Ag-TiO2 Films,” Journal of Photochemistry and Photo biology A: Chemistry, Vol. 222, No. 1, 2011, pp. 123-131. doi:10.1016/j.jphotochem.2011.05.011
[24] S. Chang, J. Z. Li and F. Liu, “Evaluation of Different Pretreatment Methods for Preparing Hydrogen-Producing Seed Inocula from Waste Activated Sludge,” Renewable Energy, Vol. 36, No. 5, 2011, pp. 1517-1522. doi:10.1016/j.renene.2010.11.023
[25] M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle or Protein-Dye Binding,” Analytical Bio chemistry, Vol. 72, No. 1-2, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3
[26] A. D. Eaton, L. S. Clesceri, E. W. Rice and A. E. Green berg, “Standard Methods for the Examination of Water and Wastewater,” American Public Health Association, 5220D, 2005, pp. 5-18-5-19.
[27] K. V. Kumar, K. Porkodi and F. Rocha, “Langmuir-Hin shelwood Kinetics—A Theoretical Study,” Catalysis Communication, Vol. 9, No. 1, 2008, pp. 82-84. doi:10.1016/j.catcom.2007.05.019
[28] B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo and V Murugesan, “Solar Light Induced TiO2 Assisted Deg radation of Textile Dye Reactive Blue 4,” Chemosphere, Vol. 46, No. 8, 2002, pp. 1173-1181. doi:10.1016/S0045-6535(01)00284-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.