全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Isolation of Aromatic Polyketide Producing Soil Streptomyces Using Combinatorial Screening Strategies

DOI: 10.4236/oalib.preprints.1200010, PP. 1-16

Keywords: Streptomyces, aromatic polyketides, screening, PCR amplification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Streptomyces, the soil dwelling filamentous genera of actinomycetes, are known to produce aromatic polyketides, which exhibit antibacterial, antifungal, antiviral and anticancer activities. The purpose of the current study was to screen soil samples for aromatic polyketide producing Streptomyces spp. using a judicious combination of conventional and molecular screening methods. A total of 54 isolates were isolated from soil samples collected from in and around Nagpur, Maharashtra, India. These isolates were characterized by conventional methods. The bioactivity of the isolates was assessed by agar cross streak method against B.subtilis, M.luteus, E.coli, P. aeruginosa, C.albicans and A.niger. Out of the 54 isolates, 31isolates (57%) showed activity against one or other test organism. These 31 bioactive isolates were subjected to secondary screening using agar well diffusion method, whereby 21 isolates were consistent in their bioactivity. The production of aromatic polyketides by these 21 bioactive isolates was determined by spectroscopic studies and chemical screening of their organic extracts. 11 isolates, which tested positive, were tested for PCR amplification of KSα fragment of type II PKS gene using degenerate primer pair act04/act06.The obtained results showed that 9 isolates (16.66%) showed the ability to produce aromatic polyketides. Out of these 9 isolates, five potent isolates were identified using 16S rRNA gene sequencing and their accession numbers have been deposited in GenBank. The identity of these isolates confirmed their ability to produce aromatic polyketides. This study indicated that combinatorial screening strategies can be used for correct identification of aromatic polyketide producing culturable Streptomyces spp from soil.

References

[1]  Altschul, S. F., T. L. Madden, et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc Acids Res 25(17): 3389-3402.
[2]  Arai, T., S. Kuroda, et al (1976) Classification of actinomycetes with reference to antibiotic production. Actinomycete: the Boundary Microorganisms, ed. Aria T: 261-276.
[3]  Arcamone, F. and G. Cassinelli (1998) Biosynthetic anthracyclines. Curr Med Chem 5(5): 391.
[4]  Ayuso, A., D. Clark, et al (2005) A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Appl Microbiol and Biotech 67(6): 795-806.
[5]  Banskota, A. H., J. B. McAlpine, et al (2006) Genomic analyses lead to novel secondary metabolites. J Antibiot 59(9): 533-542.
[6]  Barakate, M., Y. Ouhdouch, et al (2002) Characterization of rhizospheric soil streptomycetes from Moroccan habitats and their antimicrobial activities. World J Microbiol Biotechnol 18(1): 49-54.
[7]  Batel, P. L., N. C. Connors, et al (1990) Biosynthesis of anthracyclines: analysis of mutants of Streptomyces sp. strain C5 blocked in daunomycin biosynthesis. J Gen Microbiol 136(9): 1877-1886.
[8]  Bentley, S., K. Chater, et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417(6885): 141-147.
[9]  Berd, D. (1973) Laboratory Identification of Clinically Important Aerobic Actinomycetes. App Microbiol 25(4): 665-681.
[10]  Brockmann, H. (1963) Anthracyclinones and anthracyclines.(Rhodomycinone, pyrromycinone ad their glycosides). Fortschritte der Chemie organischer Naturstoffe. Progress in the chemistry of organic natural products. Progrès dans la chimie des substances organiques naturelles 21: 121.
[11]  Das, A. and C. Khosla (2009) Biosynthesis of aromatic polyketides in bacteria. Acc Chem Res 42(5): 631-639.
[12]  Dehnad, A., L. Parsa, et al (2010) Investigation antibacterial activity of Streptomycetes isolates from soil samples, West of Iran. Afri J Microbiol Res 4(14): 1542-1549.
[13]  Dhanasekaran, D., N. Thajuddin, et al (2009) Distribution and ecobiology of antagonistic streptomycetes from agriculture andcoastal soil in Tamil Nadu, India.J Culture Coll 6(1): 10-20.
[14]  Doyle, T. W., D. E. Nettleton, et al (1979) Antitumor agents from the bohemic acid complex. 4. Structures of rudolphomycin, mimimycin, collinemycin, and alcindoromycin. J Amer Chem Soc 101(23): 7041-7049.
[15]  Drautz, H., P. Reuschenbach, et al (1985) Metabolic products of microorganisms. 225. Elloramycin, a new anthracycline-like antibiotic from Streptomyces olivaceus. Isolation, characterization, structure and biological properties. J antibiot 38(10): 1291-1301.
[16]  Ellaiah, P., G. Adinarayana, et al (2005) An oligoglycosidic antibiotic from a newly isolated Streptomyces albovinaceus. Ind J Microbiol 45(1): 33.
[17]  Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Journal Name: Evolution; (United States); Journal Volume: 39:4: Medium: X; Size: Pages: 783-791.
[18]  Fguira, L. F. B., S. Bejar, et al (2012) Isolation and screening of Streptomyces from soil of Tunisian oases ecosystem for nonpolyenic antifungal metabolites. Afri J Biotechnol 11(29): 7512-7519.
[19]  Fiedler, H.-P. (1993) Biosynthetic Capacities of Actinomycetes. 1 Screening for Secondary Metabolites by HPLC and UV-Visible Absorbance Spectral Libraries. Natl Prod Letters 2(2): 119-128.
[20]  Fotso, S., R. P. Maskey, et al (2003) Isolation, Structure Elucidation and Activity of Anthracycline Acetates from a Terrestrial Streptomyces sp. ZEITSCHRIFT FUR NATURFORSCHUNG B 58(12): 1242-1246.
[21]  Fuchser, J. and A. Zeeck (1997) Secondary Metabolites by Chemical Screening, 34. – Aspinolides and Aspinonene/Aspyrone Co-Metabolites, New Pentaketides Produced by Aspergillus ochraceus. Liebigs Annalen 1997(1): 87-95.
[22]  Grammer, A. (1976) Antibiotic sensitivity and assay test." Microbiological methods. London: Butterworts: 235.
[23]  Haque, S., S. Sen, et al (1996) Antimicrobial spectra and toxicity of antibiotics from Streptomyces antibioticus sr 15.4. Ind J Microbiol 36: 113-114.
[24]  Hodgson, D. A. (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microbial Phys 42: 47-238.
[25]  Hopwood, D. A., M. Bibb, et al (1985) Genetic manipulation of Streptomyces: a laboratory manual, John Innes Foundation Norwich.
[26]  Iwai, Y. and S. Omura (1982) Culture conditions for screening of new antibiotics. J Antibiot 35(2): 123-141.
[27]  J?rgensen, H., E. Fj?rvik, et al. (2009) Candicidin biosynthesis gene cluster is widely distributed among Streptomyces spp. isolated from the sediments and the neuston layer of the Trondheim fjord, Norway. App Environ Microbiol 75(10): 3296-3303.
[28]  Katz, L. and S. Donadio (1993) Polyketide Synthesis: Prospects for Hybrid Antibiotics.Ann Rev Microbiol 47(1): 875-912.
[29]  Kim, W., H. Kim, et al (1995) Improved production, and purification of aclacinomycin a from Steptomyces lavendofoliae dkrs. J Microbiol and Biotechnol 5.
[30]  Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J Mol Evol 16(2): 111-120.
[31]  Kiska, D. L., K. Hicks, et al (2002) Identification of Medically Relevant Nocardia Species with an Abbreviated Battery of Tests. J Clin Microbiol 40(4): 1346-1351.
[32]  Komaki, H. and S. Harayama (2006) Sequence Diversity of Type-II Polyketide Synthase Genes in Streptomyces. Actinomycetologica 20(2): 42-48.
[33]  Korn-Wendisch, F., H. Kutzner, et al (1992) The family Streptomycetaceae. The Prokaryotes.(Ed. 2): 921-995.
[34]  Lechevalier, M. P. and H. Lechevalier (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20(4): 435-443.
[35]  Liu, Q., C. Liu, et al. (2012) Analysis of the Ketosynthase Genes in Streptomyces and Its Implications for Preventing Reinvestigation of Polyketides with Bioactivities. J Agri Sci 4(7): p262.
[36]  Liu, X., K. Bolla, et al (2011) Systematics-guided bioprospecting for bioactive microbial natural products. Antonie van Leeuwenhoek: 1-12.
[37]  Locci, R. (1989) Streptomycetes and related genera. BERGEY'S Manual of Syst Bacteriol 4: 2451-2508.
[38]  Magome, E., K. Harimaya, et al (1996) Structure of Furanocandin, a New Antifugal Antibiotic from Tricothecium sp. ChemInform 27(47): no-no.
[39]  McAlpine, J. B., B. O. Bachmann, et al (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68(4): 493-496.
[40]  Merck, E. (1970). Anf?rbereagenzien für Dünnschicht-und Papier-Chromatographie, E. Merck Darmstadt.
[41]  Mets?-Ketel?, M., L. Halo, et al (2002)Molecular Evolution of Aromatic Polyketides and Comparative Sequence Analysis of Polyketide Ketosynthase and 16S Ribosomal DNA Genes from Various Streptomyces Species. Appl Environ Microbiol 68(9): 4472-4479.
[42]  Mets?-Ketel?, M., V. Salo, et al (1999)An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Letters 180(1): 1-6.
[43]  Monaghan, R. L. and J. S. Tkacz (1990) Bioactive microbial products: focus upon mechanism of action. Ann Rev Microbiol 44(1): 271-331.
[44]  Ndonde, M. and E. Semu (2000) Preliminary characterization of some Streptomyces species from four Tanzanian soils and their antimicrobial potential against selected plant and animal pathogenic bacteria. World J Microbiol Biotechnol 16(7): 595-599.
[45]  Ningthoujam, D., S. Sanasam, et al (2011) Studies on Bioactive Actinomycetes in a Niche Biotope, Nambul River in Manipur, India. J Microbial Biochem Technol S 6: 2.
[46]  Olive, D. M. and P. Bean (1999) Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37(6): 1661-1669.
[47]  Oskay, M. (2009) Comparison of Streptomyces diversity between agricultural and non-agricultural soils by using various culture media. Sci Res Essays 4(10): 997-1005.
[48]  Peela, S., V. B. Kurada, et al (2005) Studies on antagonistic marine actinomycetes from the Bay of Bengal. World J Microbiol Biotechnol 21(4): 583-585.
[49]  Perrière, G. and M. Gouy (1996) WWW-query: An on-line retrieval system for biological sequence banks. Biochimie 78(5): 364-369.
[50]  Pickup, K. M., R. D. Nolan, et al (1993) A method for increasing the success rate of duplicating antibiotic activity in agar and liquid cultures of Streptomyces isolates in new antibiotic screens. J Ferm Bioengi 76(2): 89-93.
[51]  Pontius, A., I. Mohamed, et al (2008) Aromatic Polyketides from Marine Algicolous Fungi. J Nat Prod 71(2): 272-274.
[52]  Pundir, R. and P. Jain (2006) Preliminary screening of soil molds against food-associated microorganisms. J Pharm Res 3.
[53]  Radhakrishnan, M., S. Suganya, et al (2010) Preliminary screening for antibacterial and antimycobacterial activity of actinomycetes from less explored ecosystems. World J Microbiol Biotechnol 26(3): 561-566.
[54]  Rojas, J., V. Ochoa, et al (2006) Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC Comp Altern Med 6(1): 2.
[55]  Saadoun, I., F. AL-Momani, et al (2009) Comparative UV-spectra of fermented cultural extract of antifungal-active Streptomyces isolates recovered from different ecological habitats. Curr Trends Biotechnol Pharm 3(2): 155-161.
[56]  Saadoun, I. and R. Gharaibeh (2003) The Streptomyces flora of Badia region of Jordan and its potential as a source of antibiotics active against antibiotic-resistant bacteria. J Arid Environ 53(3): 365-371.
[57]  Saitou, N. and M. Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4): 406-425.
[58]  Selvameenal, L., M. Radhakrishnan, et al (2009) Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Ind J Pharm Sci 71(5): 499.
[59]  Shirling, E. B. and D. Gottlieb (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313-340.
[60]  Singh, L. S., I. Baruah, et al (2006) Actinomycetes of Loktak Habitat: Isolation and screening for antimicrobial activities. Biotechnology 5(2): 217-221.
[61]  Staley, A. L. and K. L. Rinehart (1995) Spectomycins, new antibacterial compounds produced by Streptomyces spectabilis: isolation, structures, and biosynthesis. ChemInform 26(23): no-no.
[62]  Staunton, J. and B. Wilkinson (2001) Combinatorial biosynthesis of polyketides and nonribosomal peptides. Curr Opi Chem Biol 5(2): 159-164.
[63]  Strohl, W. R. W. R. (2000) The role of natural products in a modern drug discovery program. Drug Discovery Today 5(2): 39-41.
[64]  Sun, W., C. Peng, et al (2012) Functional Gene-Guided Discovery of Type II Polyketides from Culturable Actinomycetes Associated with Soft Coral Scleronephthya sp. PloS one 7(8): e42847.
[65]  Taddei, A., M. Valderrama, et al (2006) Chemical screening: A simple approach to visualizing Streptomyces diversity for drug discovery and further research. Res Microbiol 157(3): 291-297.
[66]  Thakur, D., A. Yadav, et al. (2007) Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. J Med Mycol 17(4): 242-249.
[67]  Thompson, J. D., T. J. Gibson, et al (1997) The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nuc Acids Res 25(24): 4876-4882.
[68]  Trefzer, A., G. Blanco, et al (2002) Rationally designed glycosylated premithramycins: hybrid aromatic polyketides using genes from three different biosynthetic pathways. J Amer Chem Soc 124(21): 6056-6062.
[69]  Vetrivel, K. and K. Dharmalingam (2001) Isolation and characterization of stable mutants of<i>Streptomyces peucetius</i> defective in daunorubicin biosynthesis. J Genetics 80(1): 31-38.
[70]  Waksman, S. A. (1967) The Genus Streptomyces. The Actinomycetes. A Summary of Current Knowledge Chapter 9.
[71]  Wawrik, B., L. Kerkhof, et al (2005) Identification of unique type II polyketide synthase genes in soil. App Environ Microbiol 71(5): 2232-2238.
[72]  Wiegand, I., K. Hilpert, et al (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protocols 3(2): 163-175.
[73]  Williams, S., M. Goodfellow, et al (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129(6): 1743-1813.
[74]  Wood, S., B. Kirby, et al (2006) PCR screening reveals unexpected antibiotic biosynthetic potential in Amycolatopsis sp. strain UM16. J App Microbiol 102(1): 245-253.
[75]  Z?hner, H., H. Drautz, et al. (1988). Biology of Actinomycetes '88.
[76]  Zhan, J. (2009) Biosynthesis of bacterial aromatic polyketides. Curr Top Med Chem. 9(17):1958-610(1873-4294 (Electronic)).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413