On the Origin of Biological Functions
A. Umantsev
.
DOI: 10.4236/jmp.2011.226070   PDF    HTML     3,728 Downloads   7,975 Views   Citations

Abstract

We consider the problem of structure and functions of the first forms of living matter and present a hypothe-sis that they were formed through a physico-chemical process known as dendritic crystallization. According to this hypothesis the branching, dendritic structures helped build living systems by lending them functions so that organic chemical evolution is just one natural consequence of the evolution of matter in the universe. We conclude that a self-replicating biological system with adaptation emerged from simple molecules using completely abiotic mechanism of formation, which acted simultaneously or intermittently at different places on the early Earth and created similar structures everywhere. The dendritic hypothesis of origin of the func-tions explains similarities in the living systems and supports the assumption of a ‘second genesis of life’. The dendritic scenario does not need carbon/phosphorus-based solutes in water-based solutions, which may have important implications for exobiology and extraterrestrial origin-of-life scenarios. An experiment to test the hypothesis is suggested.

Share and Cite:

A. Umantsev, "On the Origin of Biological Functions," Journal of Modern Physics, Vol. 2 No. 6A, 2011, pp. 602-614. doi: 10.4236/jmp.2011.226070.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Abelson, P. H.: 1966, Chemical events on the primitive earth, PNAS 55, 1365-1372.
[2] Bada, J. L.: 2004, How life began on Earth: a status report, Earth Planet. Lett. 226, 1-15.
[3] Bada, J. L., Bigham, C., and Miller, S. L.: 1994, Impact melting of frozen oceans on the early Earth: Implications for the origin of life, PNAS 91, 1248-1250.
[4] Bedau, M. A.: 2010, An Aristotelian account of minimal chemical life, Astrobiology, 10, 1011-1020.
[5] Ben-Jacob, E. and Levine, H.: 2001, The artistry of nature, Nature 409, 985.
[6] Benner, S. A.: 2010, Defining life, Astrobiology, 10, 1021-1030.
[7] Blanc, C.: 2008, “Interplay between Growth Mechanisms and Elasticity in Liquid Crystalline Nuclei” Progress of Theoretical Physics Supplement 175, 93
[8] Braissant, O. et al: 2003, Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids, J. Sed. Res. 73, 485-490.
[9] Budin, I. and Szostak, J. W.: 2010, Expanding Roles for Diverse Physical Phenomena During the Origin of Life, Annu. Rev. Biophys. 39, 245-63.
[10] Buhse T. et al.: 2000, Chiral symmetry breaking in crystallization: The role of convection, PRL 84, 4405-4408.
[11] Cairns-Smith, A. G.: 1965, The origin of life and the nature of the primitive gene, J. Theor. Biol., 10, 53-88.
[12] Cairns-Smith, A. G.: 1982, Genetic takeover and the mineral origins of life, Cambridge University Press, Cambridge, UK, p. 261.
[13] Cairns-Smith, A. G.: 1986, Introducing clay, in Cairns- Smith, A. G. and Hartman, H. (eds), Clay minerals and the origin of life, Cambridge University Press, Cambridge, UK, p. 13.
[14] Cairns-Smith, A. G.: 2005, Sketches for a mineral genetic material, Elements, 1, 157-161.
[15] Cairns-Smith, A. G.: 2008, Chemistry and the missing era of evolution, Chem. Eur. J., 14, 3830-3839.
[16] Cowin, S. C.: 1999, Bone poroelasticity, J. Biomech. 32, 217-238.
[17] Davies P. C. W., Lineweaver, C. H.: 2005, Finding a second sample of life on earth, Astrobiology 5, 154-163.
[18] Davis W. L., McKay, C. P.: 1996, Origins of life: a comparison of theories and application to Mars, Orig. Life Evol. Bio., 26, 61-73.
[19] Dawkins R.: 1989, The selfish gene, Oxford University Press, New York, USA, p. 12.
[20] Deamer D.: 2010, Special collection of essay: What is life? Astrobiology, 10, 1001-1002.
[21] Doolittle, W. F.: 2000, Uprooting the tree of life, Scientific American 270, 90-95.
[22] Dougherty, A. and Lahiri, M.: 2005, J. Crystal Growth, 274, 233-240.
[23] Eastman, M. P., Helfrich, F. S. E., Porter, T. L., Umantsev, A., and Weber, R.: 2003, Exploring the structure of a hydrogen cyanide polymer by electron spin resonance and scanning force microscopy, Scanning. 25, 19-24.
[24] Eiden-Abmann, S. et al.: 2002, The influence of amino acids on the biomineralization of hydroxyapatite in gelatin, J. Inorg. Biochem. 91, 481-486.
[25] Elizabeth, A., Joseph, C., Ittyachen, M. A.: 2001, Growth and micro-topographical studies of gel grown cholesterol crystals, Bull. Mater. Science, 24 431-434.
[26] Folsome, C. E.: 1979, The Origin of Life, Freeman, San Francisco, p. 82.
[27] Fortin, D.: 2004, What biogenic minerals tell us, Science 303, 1618-1619.
[28] Fox, S. W.: 1960, How did life begin?, Science 132, 200.
[29] Gould, S. J.: 1977, Evolution's Erratic Pace, Natural History, May, 12-16.
[30] Halle, F.: 2001, Branching in plants, in Fluery, V., Gouyet, J. F., Leonetti, M. (eds.) Branching in Nature, Springer, EDP Sciences, Berlin, p. 23.
[31] Han, S. H. and Trivedi, R.: 1994, Primary spacing selection in directionally solidified alloys, Acta Metall. Mater. 42, 25-41.
[32] Hanczyc, M. M., Fujikawa, S. M., and Szostak, J. W.: 2003, Experimental models of primitive cellular compartments: encapsulation, growth, and division, Science 302, 618-622.
[33] Hansen, G., Liu, S., Lu, S.-Z., Hellawell, A.: 2002, Dendritic array growth in the systems NH4Cl-H2O and (CH2CN)2-H2O: steady state measurements and analysis, J. Cryst. Growth 234, 731-739.
[34] Hazen, R. M.: 2001, Life’s rocky start, Scientific American 271, 77-85.
[35] Hazen, R. M., Filley, T. R., and Goodfriend, G. A.: 2001, Selective adsorption of L-and D-amino acids on calcite: Implications for biochemical homochirality, PNAS 98, 5487-5490.
[36] Hazen, R. M. and Sholl, D. S.: 2003, Chiral selection on inorganic crystalline surfaces, Nature Materials 2, 367-374.
[37] Huang, S.-C., Glicksman, M. E.: 1981, Fundamentals of dendritic solidification-II. Development of sidebranch structure, Acta Metal., 29, 717-734.
[38] Jackson, K. A.: 2004, Constitutional supercooling and sur- face roughening, J. Cryst. Growth 264, 519-529.
[39] Jin, I. and Purdy, G. R.: 1974, Controlled solidification of a dilute binary alloy II. Experiment, J. Cryst. Growth 23, 37-44.
[40] Kasting, J. F.: 1993, Earth’s early atmosphere, Science 259, 920-926.
[41] Kauffman, S. A.: 1993, The Origins of Order. Self-Organization and Selection in Evolution, Oxford Univ. Press, New York.
[42] Kojo, S., Tanaka, K.: 2001, Enantioselective crystallization of D, L-amino acids by spontaneous asymmetric resolution of D,L-asparagine, Chem. Commun., 1980-1981
[43] Kojo, S., Uchino, H., Yoshimura, M., Tanaka, K.: 2004, Racemic D,L-asparagine causes enantiomeric excess of other coexisting racemic D,L-amino acids during recrystallization: a hypothesis accounting for the origin of L- amino acids in the biosphere, Chem. Commun., 2146-2147.
[44] Kondepudi, D. K., Kaufman, R. J., Singh, N.: 1990, Chiral symmetry breaking in sodium chlorate crystallization, Science 250, 975-976.
[45] Kondepudi, D. K. and Asakura, K.: 2001, Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior, Acc. Chem. Res. 34, 946-954.
[46] Ku, A. C., Darst, S. A., Kornberg, R. D., Robertson, C. R., Gast, A. P.: 1992, Dendritic growth of two-dimensional protein crystals, Langmuir, 8, 2357-2360.
[47] Ku, A. C., Darst, S. A., Robertson, C. R., Gast, A. P., Kornberg, R. D.: 1993, Molecular analysis of two-dimensional protein crystallization, J. Phys. Chem., 97, 3013-3016.
[48] Kurtz, W. and Fisher, D. J.: 1989, Fundamentals of solidification, Trans Tech. Pub., Switz. 1989, p. 65.
[49] LaCombe, J. C., Koss, M. B., Glicksman, M. E., Frei, J. E., Giummarra, C., Lupulescu, A. O.: 2002, Evidence for Tip Velocity Oscillations in Dendritic Solidification, Phys. Rev., E, 65, 031604-1-031604-6.
[50] Langer, J.: 1980, Instabilities and pattern formation in crystal growth, Rev. Mod. Phys. 52, 1-28.
[51] Lineweaver, C. H. and Davis, T.: 2002, Does the rapid appearance of life on Earth suggest that life is common in the Universe? Astrobiology 2, 293-304.
[52] Lopezcortes, A., Ochoa, J. L., Vazquezduhalt, R.: 1994, Participation of halobacteria in crystal-formation and crystallization rate of NaCl, Geomicrobio. J. 12, 69-80.
[53] Maher, K. A., Stevenson, D. J.: 1988, Impact frustration of the origin of life, Nature 331, 612-614.
[54] Martin, W. and Russell, M. J.: 2003, On the origins of cells: a hypothesis for the evolutionary transition from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells, Phil. Trans. R. Soc. Lond. B 358, 59-85.
[55] Melosh, H. J.: 1988, The rocky road to panspermia, Nature 332, 687-688.
[56] Miller, O. L., Beatty, B. R.: 1969, Visualization of nucleolar genes, Science 164, 955-957.
[57] Morowitz, H. J.: 1992, Beginnings of Cellular Life, Yale Univ. Press, New Haven, p.103.
[58] Morowitz, H. J., Heinz, B., and Deamer, D. W.: 1988, The chemical logic of a minimum protocell, Orig. Life Evol. Bio. 18, 281-287.
[59] Morowitz, H. and Smith, E.: 2007, Energy flow and the organization of life, Complexity 13, 51-59.
[60] Nakata, M., et al.: 2007, “End-to-End Stacking and Liquid Crystal Condensation of 6– to 20–Base Pair DNA Duplexes”, Science 318, 1276-79.
[61] Oparin, A. I.: 1965, The Origin of Life, Dover, N. Y., pp. 150 and 193.
[62] Orgel, L. E.: 1973, The Origin of Life: Molecules and Natural Selection, J. Wiley & Sons, N. Y., p. 190.
[63] Ovsienko, D. E., Alfintsev, G. A., and Maslov, V. V.: 1974, Kinetics and shape of crystal growth from the melt for substances with low L/kT values, J. Cryst. Growth 26, 233-238.
[64] Palyi, G., Zucchi, C., Cagliot, L.: 2002, Short definitions of life, in Palyi, G., Zucchi, C., Cagliot, L. ed., Fundamentals of life, Elsevier, Paris, p. 1.
[65] Popa, R.: 2004, Between Necessity and Probability: Searching for the Definition and Origin of Life, Springer- Verlag, Germany, p. 119.
[66] Popper, K. R.: 1972, Objective Knowledge: An Evolutionary Approach, Clarendon Press, Oxford, p. 260.
[67] Porter, D. A. and Easterling, K. E.: 1991, Phase Transformations in Metals and Alloys, Chapman & Hall, London.
[68] Porter, T. L., Eastman, M. P., Bain, E., Begay, S.: 2001, Analysis of peptides synthesized in the presence of SAz-1 montmorillonite and Cu2+ exchanged hectorite, Biophys. Chem. 91, 115-124.
[69] Prigogine, I. and Nicolis, G.: 1971, Biological order, stru- cture, and instabilities, Quart. Rev. Biophys. 4, 107-148.
[70] Prigogine, I.:1997, The end of certainty, The Free Press, N. Y., p. 128.
[71] Ramachandran, E. and Natarajan, S.: 2002, Crystal growth of some urinary stone constituents: I. In-vitro crystallization of L-tyrosine and its characterization, Cryst. Res. Technol. 37, 1160-1164.
[72] Rashevsky, N.: 1938, Mathematical Biophysics, Univ. Chicago Press, Chicago.
[73] Rasmussen, S., Chen, L., Nilsson, M., Abe, S.: 2003, Bridging Nonliving and Living Matter, Art. Life, 9, 269- 316
[74] Raup, D. M.: 1994, The role of extinction in evolution, PNAS 91, 6758-6763.
[75] Shapiro, R.: 1986, Origins, a skeptic’s guide to the creation of life on earth, Summit Books, New York, p. 205.
[76] Shibata, T et al: 1994, Effect of human blood addition on dendritic growth of cupric chloride crystals in aqueous solutions, J. Cryst. Growth 142, 147-155.
[77] Shinitsky M. et al: 2002, Unexpected differences between D- and L-tyrosine lead to chiral enhancement in racemic mixtures, Orig. Life Evol. Bio., 32, 285-297.
[78] Sleep, N. H., Zahnle, K. J., Kasting, J. F., and Morowitz, H. J.: 1989, Annihilation of ecosystems by large asteroid impacts on the early Earth, Nature, 342, 139-142.
[79] Smith, C. S.: 1964, Structure, substructure, and superstructure, Rev. Mod. Phys, 36, 524-532.
[80] Somboonsuck, K. and Trivedi, R.: 1985, Dynamical studies of dendritic growth, Acta Metall, 33, 1051-1060.
[81] Stano, P. and Luisi, P. L.: 2010, “Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells” Chem. Comm. 46, 3639-53.
[82] Ternaux, J.-P.: 2001, Neuronal Arborization, in Fluery, V., Gouyet, J.-F., Leonetti, M. (eds.) Branching in Nature, Springer, EDP Sciences, Berlin, p. 161.
[83] Thompson, D’A. W.: 1992, On growth and form, Dover, N. Y., p.912.
[84] Tiller, W. A.: 1964, Dendrites, Science 146, 871-879.
[85] Tirard, S., Morange, M., and Lazcano, A.: 2010, The definition of life: A brief history of an elusive scientific endeavor, Astrobiology, 10, 1003-1009.
[86] Turner, G., Stewart, B., Baird, T., Peacock, R. D., Cairns- Smith, A. G.: 1996, Layer morphology and growth mecha- nisms in barium ferrites, J. Cryst. Growth, 158, 276-283.
[87] Umantsev, A., Vinogradov, V., and Borisov, V.: 1986, Modeling the evolution of a dendritic structure, Sov. Phys. Crystallography 31, 596-599.
[88] Valley, J. W., Peck, W. H., King, E. M., Wilde, S. A.: 2002, A cool early Earth, Geology, 30, 351-354
[89] Viedma, C.: 2005, Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Non- linear Autocatalysis and Recycling, Phys. Rev. Lett. 94, 065504.
[90] Wachtershauser, G.: 1988, Before enzymes and templates: theory of surface metabolism, Microb. Rev. 52, 452-484.
[91] Wang S.-W., Robertson, C. R. and Gast, A. P: 1999, Molecular Arrangement in Two-Dimensional Streptavidin Crystals Langmuir, 15, 1541-1548.
[92] Wills, C. and Bada, J.: 2000, The Spark of Life, Perseus Pub. Cambridge, Mass., p. 139.
[93] Woese, C. R. and Fox, S. W.: 1977, Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms, PNAS 74, 5088-5090.
[94] Wolfe-Simon F., et al: 2010, A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus, Science DOI: 10.1126/science.1197258
[95] Yamaguchi, M., Shiga, M., Kaburaki, H.: 2005, Grain boundary decohesion by impurity segregation in a nickel- sulfur system, Science 307, 393-397.
[96] Zubay, G.:2000, Origins of Life on the Earth and in the Cosmos, Acad. Press, N. Y..

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.