State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications

Abstract

This review provides a critical overview of the recent methods and processes developed for the production of cellulose nanoparticles with controlled morphology, structure and properties, and also sums up (1) the processes for the chemical modifications of these particles in order to prevent their re-aggregation during spray-drying procedures and to increase their reactivity, (2) the recent processes involved in the production of nanostructured biomaterials and composites. The structural and physical properties of those nanocelluloses, combined with their biodegradability, make them materials of choice in the very promising area of nanotechnology, likely subject to major commercial successes in the context of green chemistry. With a prospective and pioneering approach to the subject matter, various laboratories involved in this domain have developed bio-products now almost suitable to industrial applications; although some important steps remain to be overcome, those are worth been reviewed and supplemented. At this stage, several pilot units and demonstration plants have been built to improve, optimize and scale-up the processes developed at laboratory scale. Industrial reactors with suitable environment and modern control equipment are to be expected within that context. This review shall bring the suitable processing dimension that may be needed now, given the numerous reviews outlining the product potential attributes. An abundant literature database, close to 250 publications and patents, is provided, consolidating the various research and more practical angles.

Share and Cite:

S. Rebouillat and F. Pla, "State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 165-188. doi: 10.4236/jbnb.2013.42022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Klemm, H. Schmauder and T. Heinze, “Cellulose,” Biopolymers, Vol. 6, 2002, pp. 275-319.
[2] D. Klem, B. Heublein, H. Fink and A. Bohn, “Cellulose: Fascinating Biopolymer and Sustainable Raw Material,” Angewandte Chemie International Edition, Vol. 44, No. 22, 2005, pp. 3358-3393. doi:10.1002/anie.200460587
[3] L. Petersson, I. Kvien, K. Oksman, “Structure and Thermal Properties of Poly(Lactic Acid)/Cellulose Whiskers Nanocomposite Materials,” Composites Science and Technology., Vol. 67, No. 11-12, 2007, pp. 2535-2544. doi:10.1016/j.compscitech.2006.12.012
[4] Y. Habibi, L. A. Lucia and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chemical Review, Vol. 110, No. 6, 2010, pp. 3479-3500. doi:10.1021/cr900339w
[5] D. Klemm, F. Kramer, S. Moritz, et al., “Nanocelluloses: A New Family of Natural-Based Materials,” Angewandte Chemie International Edition, Vol. 50, No. 24, 2011, 5438-5466. doi:10.1002/anie.201001273
[6] S. J. Eichhorn, C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, A. Dufresne, K. M. Entwistle, P. J. Herrera-Franco, G. C. Escamilla, L. Groom, M. Hugues, C. Hill, T. G. Rials and P. M. Wild, “Review: Current International Research into Cellulosic Fibres and Composites,” Journal of Materials Science, Vol. 36, No. 9, 2001, pp. 2107-2131. doi:10.1023/A:1017512029696
[7] L. Pranger and R. Tannenbaum, “Biobased Nanocomposites Prepared by in Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay,” Macromolecules, Vol. 41, No. 22, 2008, pp. 8682-8687. doi:10.1021/ma8020213
[8] D. Klemm, D. Schumann, F. Kramer, N. Hessler, M. Hornung, H. P. Schmauder and S. Marsch, “Nanocelluloses as Innovative Polymers in Research and Application,” Polysaccharides, Vol. 205, 2006, pp. 49-96.
[9] M. Henriksson and L. A. Berglund, “Structure and Proerties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde,” Journal of Applied Polymer Science, Vol. 106, No. 4, 2007, pp. 2817-2824. doi:10.1002/app.26946
[10] S. Iwamoto, A. N. Nakagaito and H. Yano, “Nanofibrillation of Pulp Fibers for the Processing of Transparent Nanocomposites,” Applied Physics A: Materials Science & Processing, Vol. 89, No. 2, 2007, pp. 461-466. doi:10.1007/s00339-007-4175-6
[11] V. Favier, H. Chanzy and J. Y. Cavaille, “Polymer Nanocomposites Reinforced by Cellulose Whiskers,” Macromolecules, Vol. 28, No. 18, 1995, pp. 6365-6367. doi:10.1021/ma00122a053
[12] F. A. L. Clowes and B. E. Juniper, “Plant Cells,” Blackwell Science Ltd., Oxford, 1968.
[13] H. A. Krässig, “Cellulose Structure, Accessibility and Reactivity,” Gordon and Breach Science Publishers, Yverdon, 1993, pp. 307-314.
[14] H. C. Brittain, G. Lewen , A. W. Newman, K. Fiorelli and S. Bogdanowich, “Changes in Material Properties Accompanying the National Formulary (NF) Identity Test for Microcrystalline Cellulose,” Pharmaceutical Research, Vol. 10, No. 1, 1993, pp. 61-67. doi:10.1023/A:1018921012812
[15] N. Y. Uesu, E. A. G. Pineda and A. A. W. Hechenleitner, “Microcrystalline Cellulose from Soybean Husk: Effects of Solvent Treatments on Its Properties as Acetylsalicylic Acid Carrier,” International Journal of Pharmaceutics, Vol. 206, No. 1-2, 2000, pp. 85-96 doi:10.1016/S0378-5173(00)00532-9
[16] B. L. Peng, N. Dhar, H. L. Liu and K. C. Tam, “Chemistry and Applications of Nanocrystalline Cellulose and Its Derivatives: A Nanotechnology Perspective,” The Canadian Journal of Chemical Engineering, Vol. 89, No. 5, 2011, pp. 1191-1206. doi:10.1002/cjce.20554
[17] S. Beck-Candanedo, M. Roman and D. G. Gray, “Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystals Suspensions,” Biomacromolecules, Vol. 6, No. 2, 2005, pp. 1048-1054. doi:10.1021/bm049300p
[18] D. Bondeson, A. Mathew and K. Oksman, “Optimization of the Isolation of Nanocrystals from Microcrystalline Cellulose by Acid Hydrolysis,” Cellulose, Vol. 13, No. 2, 2006, pp. 171-180. doi:10.1007/s10570-006-9061-4
[19] X. Li, E. Ding and G. Li, “A Method of Preparing Spherical Nanocrystals Cellulose with Mixed Crystalline Forms of Cellulose I and II,” Chinese Journal of Polymer Science, Vol. 19, No. 3, 2001, pp. 291-296.
[20] M. T. Postek, A. Vladar, J. Dagata, et al., “Cellulose Nanocrystals the Next Big Nano-Thing?” Proceedings of SPIE—The International Society for Optical Engineering, San Diego, 10 August 2008, p. 7042
[21] M. A. Hubbe, O. J. Rojas, L. A. Lucia and M. Sain, “Cellulosic Nanocomposites—A Review,” BioResources, Vol. 3, No. 3, 2008, pp. 929-980.
[22] I. Siro and D. Plackett, “Microfibrillated Cellulose and New Nanocomposite Materials: A Review,” Cellulose, Vol. 17, No. 3, 2010, pp. 459-494. doi:10.1007/s10570-010-9405-y
[23] P. Stenius and M. Andresen, “Highlights in Colloid Science,” Wiley-VCH Verlag GmbH & Co. KGaA, Weinhelm, 2009, pp. 135-154.
[24] W. Stelte and A. R. Sanadi, “Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps,” Industrial and Engineer Chemistry Research, Vol. 48, No. 24, 2009, pp. 1121111219. doi:10.1021/ie9011672
[25] R. H. Marchessault, F. F. Morehead and N. M. Walter, “Liquid Crystal Systems from Fibrillar Polysaccharides,” Nature, Vol. 184, No. 4686, 1959, pp. 632-633. doi:10.1038/184632a0
[26] M. Henriksson, G. Henriksson, L. A. Berglund and T. Lindström, “An Environmentally Friendly Method for Enzyme Assisted Preparation of Microfibrillated Cellulose (MFC) Nanofibers,” European Polymer, Vol. 43, No. 8, 2007, pp. 3434-3441. doi:10.1016/j.eurpolymj.2007.05.038
[27] M. Pääkkö, M .Ankerfors, H. Kosonen, A. Nykanen, S. Ahola, M. Osterberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala and T. Lindström, “Enzymatic Hydrolysis Combined with Mechanical Shearing and HighPressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels,” Biomacromolecules, Vol. 8, No. 6, 2007, pp. 1934-1941. doi:10.1021/bm061215p
[28] E. Abraham, B. M. Cherian, C. N. George and L. A. Pothan, “Process for Synthesis of Nanofibrils of Natural Fibers by Steam Explosion,” IN200702267-I4, 2010.
[29] H. H. Anette, “Preparation of Microfibrillar Polysaccharide Used to Provide Microfibrillar Cellulose Comprises Treating Polysaccharide in Aqueous Suspension Having Oxidant and Transition Metal, and Mechanically Delaminating of Polysaccharide,” WO2007001229-A1, 2007.
[30] F. A. Agblevor, M. M. Ibrahim and W. K. El-Zawawy, “Coupled Acid and Enzyme Mediated Production of Microcrystalline Cellulose from Corn Cob and Cotton Gin Waste,” Cellulose, Vol. 14, No. 3, 2007, pp. 247-256. doi:10.1007/s10570-006-9103-y
[31] S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules, Vol. 9, No. 1, 2008, pp. 57-65. doi:10.1021/bm700769p
[32] T. Saito, Y. Nishiyama, J. L. Putaux, M. Vignon and A. Isogai, “Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose,” Biomacromolecules, Vol. 7, No. 6, 2006, pp. 1687-1691. doi:10.1021/bm060154s
[33] B. S. L. Brito, F. V. Pereira, J. L Putaux and B. Jean, “Preparation, Morphology and Structure of Cellulose Nanocrystals from Bamboo Fibers,” Cellulose, Vol. 19, No. 5, 2012, pp. 1527-1536. doi:10.1007/s10570-012-9738-9
[34] Y. Habibi and A. Dufresne, “Highly Filled Bionanocomposites from Functionalised Polysaccharide Nanocrystals,” Biomacromolecules, Vol. 9, No. 7, 2008, pp. 19741980. doi:10.1021/bm8001717
[35] N. L. G. de Rodriguez, W. Thielemans and A. Dufresne, “Sisal Cellulose Whiskers Reinforced Polyvinyl Acetate Nanocomposites,” Cellulose, Vol. 13, No. 3, 2006, pp. 261-270. doi:10.1007/s10570-005-9039-7
[36] G. Siqueira, J. Bras and A. Dufresne, “Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and Its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites,” Biomacromolecules, Vol. 10, No. 2, 2009, pp. 425-432. doi:10.1021/bm801193d
[37] W. Helbert, J. Y. Cavaille and A. Dufresne, “Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whiskers. Part I: Processing and Mechanical Behavior,” Polymer Composites, Vol. 17, No. 4, 1996, pp. 604611. doi:10.1002/pc.10650
[38] A. Dufresne, J. Y. Cavaille and W. Helbert, “Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whiskers. Part II: Effect of Processing and Modeling,” Polymer Composites, Vol. 18, No. 2, 1997, pp. 198-210. doi:10.1002/pc.10274
[39] A. Alemdar and M. Sain, “Isolation and Characterization of Nanofibers from Agricultural Residues-Wheat Straw and Soy Hulls,” Bioresource Technology, Vol. 99, No. 6, 2008, pp. 1664-1671. doi:10.1016/j.biortech.2007.04.029
[40] T. Zimmermann, N. Bordeanu and E. Strub, “Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential,” Carbohydrate Polymers, Vol. 79, No. 4, 2010, pp. 1086-1093. doi:10.1016/j.carbpol.2009.10.045
[41] S. Kimura and T. Itoh, “New Cellulose Synthesizing Complexes (Terminal Complexes) Involved in Animal Cellulose Biosynthesis in Tunicate Metandrocarpa uedai,” Protoplasma, Vol. 194, No. 3-4, 1996, pp. 151-163. doi:10.1007/BF01882023
[42] W. Helbert, Y. Nishiyama, T. Okano and J. Sugiyama, “Molecular Imaging of Halocynthia papillosa Cellulose,” Journal of Structural Biology, Vol. 124, No. 1, 1998, pp. 42-50. doi:10.1006/jsbi.1998.4045
[43] S. Kimura and T. Itoh, “Cellulose Synthesizing Terminal Complexes in the Ascidians,” Cellulose, Vol. 11, No. 3-4, 2004, pp. 377-383. doi:10.1023/B:CELL.0000046414.72903.33
[44] S. Iwamoto, W. H. Kai, A. Isogai and T. Iwata, “Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy,” Biomacromolecules, Vol. 10, No. 9, 2009, pp. 2571-2576. doi:10.1021/bm900520n
[45] J. F. Revol, “On the Cross-Sectional Shape of Cellulose Crystallites in Valonia ventricosa,” Carbohydrate Polymers, Vol. 2, No. 2, 1982, pp. 123-134. doi:10.1016/0144-8617(82)90058-3
[46] J. Sugiyama, H. Harada, Y. Fujiyoshi and N. Uyeda, “Lattice Images from Ultrathin Sections of Cellulose Microfibrils in the Cell Wall of Valonia macrophysa Kütz,” Planta, Vol. 166, No. 2, 1985, pp. 161-168. doi:10.1007/BF00397343
[47] S. J. Hanley, J. Giasson, J. F. Revol and D. G. Gray, “Atomic Force Microscopy of Cellulose Microfibrils: Comparison with Transmission Electron Microscopy,” Polymer, Vol. 33, No. 21, 1992, pp. 4639-4642. doi:10.1016/0032-3861(92)90426-W
[48] N. H. Kim, W. Herth, R. Vuong and H. Chanzy, “The Cellulose System in the Cell Wall of Micrasterias,” Journal of Structural Biology, Vol. 117, No. 3, 1996, pp. 195-203. doi:10.1006/jsbi.1996.0083
[49] S. J. Hanley, J. F. Revol, L. Godbout and D. G. Gray, “Atomic Force Microscopy and Transmission Electron Microscopy of Cellulose from Micrasterias denticulata; Evidence for a Chiral Helical Microfibril Twist,” Cellulose, Vol. 4, No. 3, 1997, pp. 209-220. doi:10.1023/A:1018483722417
[50] T. Imai and J. Sugiyama, “Nanodomains of I-Alpha and I-Beta Cellulose in Algal Microfibrils,” Macromolecules, Vol. 31, No. 18, 1998, pp. 6275-6279. doi:10.1021/ma980664h
[51] H. Yamamoto and F. Horii, “In Situ crystallization of Bacterial Cellulose I. Influences of Polymeric Additives, Stirring and Temperature on the Formation Celluloses Iα and Iβ as Revealed by Cross Polarization/Magic Angle Spinning (CP/MAS)13C NMR Spectroscopy,” Cellulose, Vol. 1, No. 1, 1994, pp. 57-66. doi:10.1007/BF00818798
[52] C. Tokoh, K. Takabe, M. Fujita and H. Saiki, “Cellulose Synthesized by Acetobacter xylinum in the Presence of Acetyl Glucomannan,” Cellulose, Vol. 5, No. 4, 1998, pp. 249-261. doi:10.1023/A:1009211927183
[53] T. Koshizawa, “Investigation on Dissolving Pulp. XIV. Some Behavior of Wood Pulp and Cotton Linters in Phosphoric Acid,” Bulletin of the Chemical Society of Japan, Vol. 31, No. 6, 1958, pp.705-708. doi:10.1246/bcsj.31.705
[54] T. Okano, S. Kuga, M. Wada, J. Araki and J. Ikuina, JP 98/151052, Nisshin Oil Mills Ltd., Japan, 1999.
[55] H. Ono, T. Matsui and I. Miyamato, WO98/JP5462, Japan, 1999.
[56] P. B. Filson and B. E. Dawson-Andoh, “Sono-Chemical Preparation of Cellulose Nanocrystals from Lignocellulose Derived Materials,” Bioresource Technology, Vol. 100, No. 7, 2009, pp. 2259-2264. doi:10.1016/j.biortech.2008.09.062
[57] J. Araki, M. Wada, S. Kuga and T. Okano, “Flow Properties of Microcrystalline Cellulose Suspension Prepared by Acid Treatment of Native Cellulose,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 142, No. 1, 1998, pp. 75-82. doi:10.1016/S0927-7757(98)00404-X
[58] J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault and D. G. Gray, “Helicoidal Self-Ordering of Cellulose Microfibrils in Aqueous Suspension,” International Journal of Biological Macromolecules, Vol. 14, No. 3, 1992, pp. 170-172. doi:10.1016/S0141-8130(05)80008-X
[59] M. Roman and W. T. Winter, “Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behaviour of Bacterial Cellulose,” Biomacromolecules, Vol. 5, No. 5, 2004, pp.1671-1677. doi:10.1021/bm034519+
[60] N. Wang, E. Ding and R. Cheng, “Thermal Degradation Behaviors of Spherical Cellulose Nanocrystals with Sulfate Groups,” Polymer, Vol. 48, No. 12, 2007, pp. 34863493. doi:10.1016/j.polymer.2007.03.062
[61] O. A. Battista and P. A. Smith, “Level-Off Degree of Polymerization Cellulose Products,” US Patent No. 2, 978, 446, 1961.
[62] O. A. Battista and P. A. Smith, “Crystallite Cellulosic Aggregates Prepared in an Acid Medium,” US Patent No. 3,141,875, 1964.
[63] O. A. Battista and J. J. Jr. Byrne, “Cellulose Crystallite Aggregates in Chromatographic Adsorption,” US Patent No. 3,179,587, 1965.
[64] X. M. Dong, J. F. Revol and D. G. Gray, “Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose,” Cellulose, Vol. 5, No. 1, 1998, pp. 19-32. doi:10.1023/A:1009260511939
[65] J. Araki, M. Wada, S. Kuga and T. Okano, “Birefringent Glassy Phase of a Cellulose Microcrystal Suspension,” Langmuir, Vol. 16, No. 6, 2000, pp. 2413-2415. doi:10.1021/la9911180
[66] Y. Habibi, A. Goffin, N. Schiltz, E. Duquesne, P. Dubois and A. Dufresne, “Bionanocomposites Based on Poly (ε-caprolactone)-Grafted Cellulose Nanocrystals by RingOpening Polymerisation,” Journal of Materials Chemistry, Vol. 18, No. 41, 2008, pp. 5002-5010. doi:10.1039/b809212e
[67] Y. Habibi, L. Foulon, V. Aguié-Béghin, M. Molinari and R. Douillard, “Langmuir-Blodgett Films of Cellulose Nanocrystals: Preparation and Characterisation,” Journal of Colloid and Interface Science, Vol. 316, No. 2, 2007, pp. 388-397. doi:10.1016/j.jcis.2007.08.041
[68] X. Cao, Y. Chen, P. R. Chang, M. Stumborg and M. A. Huneault, “Green Composites Reinforced with Hemp Nanocrystals in Plasticized Starch,” Journal of Applied Polymer Science, Vol. 109, No. 6, 2008, pp. 3804-3810. doi:10.1002/app.28418
[69] X. Cao, Y. Chen, P. R. Chang, A. D. Muir and G. Falk, “Starch-Based Nanocomposites Reinforced with Flax Cellulose Nanocrystals,” Express Polymer Letters, Vol. 2, No. 7, 2008, pp. 502-510. doi:10.3144/expresspolymlett.2008.60
[70] X. Cao, H. Dong and C. M. Li, “New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane,” Biomacromolecules, Vol. 8, No. 3, 2007, pp. 899-904. doi:10.1021/bm0610368
[71] A. Bendahou, Y. Habibi, H. Kaddami and A. Dufresne, “Physico-Chemical Characterization of Palm from Phoenix Dactylifera-L, Preparation of Cellulose Whiskers and Natural Rubber-Based Nanocomposites,” Journal of Biobased Materials and Bioenergy, Vol. 3, No. 1, 2009, pp. 81-90. doi:10.1166/jbmb.2009.1011
[72] J. Araki, M. Wada, S. Kuga and T. Okano, “Influence of Surface Charge on Viscosity Behavior of Cellulose Microcrystal Suspension,” Journal of Wood Science, Vol. 45, No. 3, 1999, pp. 258-261. doi:10.1007/BF01177736
[73] M. Roohani, Y. Habibi, N. M. Belgacem, G. Ebrahim, A. N. Karimi and A. Dufresne, “Cellulose Whiskers Reinforced Polyvinyl Alcohol Copolymers Nanocomposites,” European Polymer Journal, Vol. 44, No. 8, 2008, pp. 2489-2498. doi:10.1016/j.eurpolymj.2008.05.024
[74] X. Cao, Y. Habibi and L. A. Lucia, “One-Pot Polymerization, Surface Grafting, and Processing of Waterborne Polyurethane-Cellulose Nanocrystal Nanocomposites,” Journal of Materials Chemistry, Vol. 19, No. 38, 2009, pp. 7137-7145. doi:10.1039/b910517d
[75] J. R. Capadona, K. Shanmuganathan, S. Trittschuh, S. Seidel, S. J. Rowan and C. Weder, “Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose,” Biomacromolecules, Vol. 10, No. 4, 2009, pp. 712-716. doi:10.1021/bm8010903
[76] D. Bondeson, I. Kvien and K. Oksman, “In Cellulose Nanocomposites: Processing, Characterization, and Properties,” In: K. Oksman and M. Sain, Eds., ACS Symposium Series 938, American Chemical Society, Washington DC, 2006.
[77] M. A. S. A. Samir, F. Alloin, M. Paillet and A. Dufresne, “Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites,” Macromolecules, Vol. 37, No. 11, 2004, pp. 4313-4316. doi:10.1021/ma035939u
[78] M. Grunert and W. T. Winter, “Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals,” Journal of Polymers and the Environment, Vol. 10, No. 1-2, 2002, pp. 27-30. doi:10.1023/A:1021065905986
[79] J. Araki and S. Kuga, “Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals,” Langmuir, Vol. 17, No. 15, 2001, pp. 4493-4496. doi:10.1021/la0102455
[80] A. Hirai, O. Inui, F. Horii and M. Tsuji, “Phase Separation Behavior in Aqueous Suspensions of Bacterial Cellulose Nanocrystals Prepared by Sulfuric Acid Treatment,” Langmuir, Vol. 25, No. 1, 2009, pp.497-502. doi:10.1021/la802947m
[81] M. N. Angles and A. Dufresne, “Plasticized Starch/Tuni cin Whiskers Nanocomposites: 1. Structural Analysis,” Macromolecules, Vol. 33, No. 22, 2000, pp. 8344-8353. doi:10.1021/ma0008701
[82] H. Angelier, L. Choisnard, S. Molina-Boisseau, P. Ozil and A. Dufresne, “Optimization of the Preparation of Aqueous Suspensions of Waxy Maize Starch Nanocrystals Using a Response Surface Methodology,” Bio-macromolecules, Vol. 5, No. 4, 2004, pp.1545-1550. doi:10.1021/bm049914u
[83] C. Xuerong and C. Yandan, “Method for Preparing Nanocrystal Cellulose I by Applying Acid Cation Exchange Resin,” CN101759807A, 2010.
[84] H. Ishikawa, S. Ide and C. Kawamata, “Manufacture of Microfibrillated Cellulose Fibers,” JP92-165820, 5, 1994.
[85] H. Shibuya and T. Hayashi, “Manufacture of Cellulose Nanofibers by Enzymatic Treatment and Cellulose Nanofibers Manufactured Thereby,” JP2006-337350, 13, 2008.
[86] H. Yano, N. Seki and T. Ishida, “Manufacture of Nanofibers and nanofibers manufactured thereby,” JP2007-2229, 17, 2008.
[87] M. Ankerfors, T. Lindstrom and G. Henriksson, “Method for Treating Chemical Pulp for Manufacturing Micro-Fibrillated,” US20090221812, 2009.
[88] M. Vehvilaeinen, T. Kamppuri, M. Peltola, et al., “Process for Producing Microfibrillated Cellulose,” WO2011 004300A1, 2011.
[89] I. Heiskanen, K. Backfolk, M. Vehviläinen, et al., “Process for the Production of Microfibrillated Cellulose and Produced Microfibrillated Cellulose,” WO2011004284, 2011.
[90] G. Henriksson, A. Nut, H. Henriksson, B. Pettersson, J. Stahlberg, G. Johansson and G. Pettersson, “Endoglucanase 28 (Cel12a), A New Phanerochaete Chrysosporium Cellulase,” European Journal of Biochemistry, Vol. 259, No. 1-2, 1999, pp. 88-95. doi:10.1046/j.1432-1327.1999.00011.x
[91] G. Henriksson, M. Christiernin and R. Agnemo, “Monocomponent Endoglucanase Treatment Increases the Reactivity of Softwood Sulfite Dissolving Pulp,” Journal of Industrial Microbiology and Biotechnology, Vol. 32, No. 5, 2005, pp. 211-214. doi:10.1007/s10295-005-0220-7
[92] E. R. Berghem and L. G. Pettersson, “Mechanism of Enzymatic Cellulose Degradation-Purification of A Cellulolytic Enzyme from Trichoderma-Viride Active on Highly Ordered Cellulose,” European Journal of Biochemistry, Vol. 37, No. 1, 1973, pp. 21-30. doi:10.1111/j.1432-1033.1973.tb02952.x
[93] A. Lopez-Rubio, J. M. Lagaron, M. Ankerfors, T. Lindström, D. Nordqvist, A. Mattozzi and M. S. Hedenqvist, “Enhanced Film Forming and Film Properties of Amylopectin Using Micro-Fibrillated Cellulose,” Carbohydrate Polymers, Vol. 68, No. 4, 2007, pp. 718-727. doi:10.1016/j.carbpol.2006.08.008
[94] A. J. Svagan, M. A. S. A. Samir and L. A. Berglund, “Biomimetic Polysaccharide Nanocomposites of High Cellulose Content and High Toughness,” Biomacromolecules, Vol. 8, No. 8, 2007, pp. 2556-2563. doi:10.1021/bm0703160
[95] P. B. Filson, B. Dawson-Andoh and D. Schwegler-Berry, “Enzymatic-Mediated Production of Cellulose Nanocrystals from Recycled Pulp,” Green Chemistry, Vol. 11, No. 11, 2009, pp. 1808-1814. doi:10.1039/b915746h
[96] T. Saito and A. Isogai, “Introduction of Aldehyde Groups on Surfaces of Native Cellulose Fibers by TEMPO-Mediated Oxidation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 289, No.1-3, 2006, pp. 219-225. doi:10.1016/j.colsurfa.2006.04.038
[97] T. Saito, S. Kimura, Y. Nishiyama and A. Isogai, “Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose,” Biomacromolecules, Vol. 8, No. 8, 2007, pp. 2485-2491. doi:10.1021/bm0703970
[98] T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux and A. Isogai, “Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions,” Biomacromolecules, Vol. 10, No. 7, 2009, pp. 1992-1996. doi:10.1021/bm900414t
[99] Y. Habibi and M. Vignon, “Optimization of Cellouronic Acid Synthesis by TEMPO-Mediated Oxidation of Cellulose III from Sugar Beet Pulp,” Cellulose, Vol. 15, No. 1, 2008, pp. 177-185. doi:10.1007/s10570-007-9179-z
[100] J. Araki, M. Wada and S. Kuga, “Steric Stabilization of A Cellulose Microcrystal Suspension by Poly(Ethylene Glycol) Grafting,” Langmuir, Vol. 17, No. 1, 2001, pp. 2127.
[101] J. Engelhard, S. Ficher, K. Hettrich, et al., “Nanoparticles of Slightly Oxidized Cellulose,” WO2009021688A1, 2009.
[102] S. Miyawaki, S. Katsukawa, H. Abe, et al., “Process for Producing Cellulose Nanofibers,” WO2010116826A1, 2010.
[103] S. Miyawaki, S. Katsukawa, H. Abe, et al., “Process for Producing Cellulose Nanofibers, Cellulose Oxidation Catalysts and Methods for Oxidizing Cellulose,” US2010 282422A1, 2010.
[104] M. Frey and Y. L. Joo, “Cellulose Solution in Novel Solvent and Electrospinning Thereof,” US2005247236A1, 2005.
[105] M. H. F. Godinho, J. P. H. G. Canejo, J. P. M. R. Borges, et al., “Nanofibras Celulósicas Obtida por Electrospinning a Partir de SoluçÕes Liquidas,” PT104094A, 2010.
[106] T. Christoforou and C. Doumanidis, “Biodegradable Cellulose Acetate Nanofiber Fabrication via Electrospinning,” Journal of Nanoscience and Nanotechnology, Vol. 10, No. 9, 2010, pp. 6226-6233. doi:10.1166/jnn.2010.2577
[107] A. N. Nakagaito and H. Yano, “Novel High-Strength Biocomposites Based on Microfibrillated Cellulose Having nanoorder-Unit Web-Like Network Structure,” Applied Physics A: Materials Science and Processing, Vol. 80, No. 1, 2005, pp. 155-159. doi:10.1007/s00339-003-2225-2
[108] P. Stenstad, M. Andresen, B. S. Tanem and P. Stenius, “Chemical Surface Modifications of Microfibrillated Cellulose,” Cellulose, Vol. 15, No. 1, 2008, pp. 35-45. doi:10.1007/s10570-007-9143-y
[109] A. N. Nakagaito and H. Yano, “The Effect of Morphological Changes from Pulp Fiber Towards Nano-Scale Fibrillated Cellulose on the Mechanical Properties of High-Strength Plant Fiber Based Composites,” Applied Physics A: Materials Science and Processing, Vol. 78, No. 4, 2004, pp. 547-552. doi:10.1007/s00339-003-2453-5
[110] M. Shigematsu, “Fibrillar Cellulose and Its Production,” JP2000017592A, 2000
[111] I. Hiroshyokota and O. Yoshiaki, “Homogenization of Microcrystalline Cellulose Suspension,” JP59120638A, 1984.
[112] T. Zimmermann, E. Pohler and T. Geiger, “Cellulose Fibrils for Polymer Reinforcement,” Advanced Engineering Materials, Vol. 6, No. 9, 2004, pp. 754-761. doi:10.1002/adem.200400097
[113] T. LindstrÖm, “Towards New Perspectives in Paper Chemistry,” Das Papier IPW, Vol. 10, 2007, pp. 3236.
[114] S. Beck, J. Bouchard and R. Berry, “Control of Nanocrystalline Cellulose Film Iridescence Wavelength,” US 20100279019, 2010.
[115] C. Peng, C. Wenshuai, H. Yunfei, et al., “Preparation Method of Homogenized Fine Nano-Cellulose Fiber,” CN 101851295A, 2010.
[116] C. Peng, C. Wenshuai, L. Yixing, et al., “Method for Preparing Nanometer Cellulose Fiber through Combining Ultrasound and Highpressure Homogenization Treatment,” CN101851801A, 2010.
[117] J. Paltakari, J. Laine, M. Österberg, et al., “A Method for Producing Modified Cellulose,” WO2010092239A1, 2010.
[118] P. A. C. Gane, J. Schoelkopf, D. Gantenbein, et al., “Process for the Production of Nano-Fibrillar Cellulose Gels,” WO2010115785A1, 2010.
[119] M. Ankerfors and T. Lindstrom, “Method for Providing Nanocellulose Involving Modifying Cellulose Fibers,” US20110036522A1, 2011.
[120] T. Taniguchi and K. Okamura, “New Films Produced from Microfibrillated Natural Fibres,” Polymer International, Vol. 47, No. 3, 1998, pp. 291-294, doi:10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1
[121] K. Abe, S. Iwamoto and H. Yano, “Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm From Wood,” Biomacromolecules, Vol. 8, No. 10, 2007, pp. 3276-3278 doi:10.1021/bm700624p
[122] S. Iwamoto, A. N. Nakagaito, H. Yano and M. Nogi, “Optically Transparent Composites Reinforced with Plant Fiber-Based Nanofibers,” Applied Physics A: Materials Science and Processing, Vol. 81, No. 6, 2005, pp. 11091112. doi:10.1007/s00339-005-3316-z
[123] S. Iwamoto, A. N. Nakagaito and H. Yano, “Nano-Fibrillation of Pulp Fibers for the Processing of Transparent Nanocomposites,” Applied Physics A: Materials Science and Processing, Vol. 89, No. 2, 2007, pp. 461-466. doi:10.1007/s00339-007-4175-6
[124] A. Chakraborty, M. Sain and M. Kortschot, “Cellulose Microfibrils: A Novel Method of Preparation Using High Shear Refining and Cryocrushing,” Holzforschung, Vol. 59, No. 1, 2005, pp. 102-107. doi:10.1515/HF.2005.016
[125] B. Wang and M. Sain, “Dispersion of Soybean StockBased Nanofiber in a Plastic Matrix,” Polymer International, Vol. 56, No. 4, 2007, pp. 538-546. doi:10.1002/pi.2167
[126] A. Bhatnagar and M. Sain, “Processing of Cellulose Nanofiberreinforced Composites,” Journal of Reinforced Plastics and Composites, Vol. 24, No. 12, 2005, pp. 12591268. doi:10.1177/0731684405049864
[127] M. M. de Souza Lima, J. T. Wong, M. Paillet, R. Borsali and R. Pecora, “Translational and Rotational Dynamics of Rodlike Cellulose Whiskers,” Langmuir, Vol. 19, No. 1, 2003, pp. 24-29. doi:10.1021/la020475z
[128] C. Rondeau-Mouro, B. Bouchet, B. Pontoire, P. Robert, J. Mazoyer and A. Buleon, “Structural Features and Potential Texturizing Properties of Lemon and Maize Cellulose Microfibrils,” Carbohydrate Polymers, Vol. 53, 2003, pp. 241252. doi:10.1016/S0144-8617(03)00069-9
[129] L. Mott, L. Groom and S. Shaler, “Mechanical Properties of Individual Southern Pine Fibers. Part II. Comparison of Earlywood and Latewood Fibers with Respect to Tree Height and Juvenility,” Wood and Fiber Science, Vol. 34, No. 2, 2002, pp. 221-237.
[130] S. J. Eichhorn, J. Sirichaisit and R. J. Young, “Deformation Mechanisms in Cellulose Fibres, Paper and Wood,” Journal of Materials Science, Vol. 36, No. 13, 2001, pp. 3129-3135. doi:10.1023/A:1017969916020
[131] S. J. Eichhorn and R. J. Young, “The Young’s Modulus of a Microcrystalline Cellulose,” Cellulose, Vol. 8, No. 3, 2001, pp. 197-207. doi:10.1023/A:1013181804540
[132] R. R. Lahiji, X. Xu, R. Reifenberger, A. Raman, A. Rudie and R. J. Moon, “Atomic Force Microscopy Characterization of Cellulose Nanocrystals,” Langmuir, 2010, Vol. 26, No. 6, pp. 4480-4488. doi:10.1021/la903111j
[133] R. Rusli and S. J. Eichhorn, “Determination of the Stiffness of Cellulose Nanowhiskers and the Fiber-Matrix Interface in a Nanocomposite Using Raman Spectroscopy,” Applied Physics Letters, Vol. 93, No. 3, 2008, Article ID: 033111. doi:10.1063/1.2963491
[134] A. Sturcova, G. R. Davies and S. J. Eichhorn, “Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers,” Biomacromolecules, Vol. 6, No. 2, 2005, pp. 1055-1061. doi:10.1021/bm049291k
[135] Y. C. Hsieh, H. Yano, M. Nogi and S. J. Eichhorn, “An Estimation of the Young’s Modulus of Bacterial Cellulose Filaments,” Cellulose, Vol. 15, No. 4, 2008, pp. 507513. doi:10.1007/s10570-008-9206-8
[136] T. Nishino, I. Matsuda and K. Hirao, “All-Cellulose Composite,” Macromolecules, Vol. 37, No. 20, 2004, pp. 7683-7687. doi:10.1021/ma049300h
[137] H. Yano, J. Sugiyama, A. N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita and K. Handa, “Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers,” Advanced Materials, Vol. 17, No. 2, 2005, pp. 153-155. doi:10.1002/adma.200400597
[138] A. N. Nakagaito, M. Nogi and H. Yano, “Displays from Transparent Films of Natural Nanofibers,” MRS Bulletin, Vol. 35, No. 3, 2010, pp. 214-218. doi:10.1557/mrs2010.654
[139] E. Lasseuguette, D. Roux and Y. Nishiyama, “Rheological Properties of Microfibrillar Suspension of TEMPOOxidized Pulp,” Cellulose, Vol. 15, No. 3, 2008, pp. 425433. doi:10.1007/s10570-007-9184-2
[140] S. Spoljaric, A. Genovese and R. A. Shanks, “Polypropylene-Microcrystalline Cellulose Composites with Enhanced Compatibility and Properties,” Composites Part A: Applied Science and Manufacturing, Vol. 40, No. 6-7, 2009, pp. 791-799. doi:10.1016/j.compositesa.2009.03.011
[141] S. Padalkar, J. R. Capadona, S. J. Rowan, C. Weder, Y. H. Won, L. A. Stanciu and R. J. Moon, “Natural Biopolymers: Novel Templates for the Synthesis of Nanostructures,” Langmuir, Vol. 26, No. 11, 2010, pp. 8497-8502. doi:10.1021/la904439p
[142] L. Heux, G. Chauve and C. Bonini, “Nonflocculating and Chiral-Nematic Self-Ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents,” Langmuir, Vol. 16, No. 21, 2000, pp.8210-8212. doi:10.1021/la9913957
[143] L. Heux, and C. Bonini, “Microfibrillated and/or Micrcroystalline Dispersion, in Particular of Cellulose, in an Organic Solvent,” International Patent WO 2000/077088, 2000.
[144] E. D. Cranston and D. G. Gray, “Morphological and Optical Characterization of Polyelectrolyte Multilayers Incorporating Nanocrystalline Cellulose,” Biomacromolecules, Vol. 7, No. 9, 2006, pp. 2522-2530. doi:10.1021/bm0602886
[145] C. Goussé, H. Chanzy, G. Excoffier, L. Soubeyrand and E. Fleury, “Stable Suspensions of Partially Silylated Cellulose Whiskers Dispersed in Organic Solvents,” Polymer, Vol. 43, No. 9, 2002, pp. 2645-2651. doi:10.1016/S0032-3861(02)00051-4
[146] Y. Habibi, H. Chanzy and M. Vignon, “TEMPO-Mediated Surface Oxidation of Cellulose Whiskers,” Cellulose, Vol. 13, No. 6, pp. 679-687. doi:10.1007/s10570-006-9075-y
[147] M. Hasani, E. D. Cranston, G. Westman and D. G. Gray, “Cationic Surface Functionalisation of Cellulose Nanocrystals,” Soft Matter, Vol. 4, No. 11, 2008, pp. 2238-2244. doi:10.1039/b806789a
[148] B. Braun and J. R. Dorgan, “Single-Step Method for the Isolation and Surface Functionalisation of Cellulosic Nanowhiskers,” Biomacromolecules, Vol. 10, No. 2, 2009, pp. 334-341. doi:10.1021/bm8011117
[149] G. Morandi, L. Heath and W. Thielemans, “Cellulose Nanocrystals Grafted With Polystyrene Chains through Surface-Initiated Atom Transfer Radical Polymerisation (SI-ATRP),” Langmuir, Vol. 25, No. 14, 2009, pp. 82808286. doi:10.1021/la900452a
[150] J. Sassi and H. Chanzy, “Ultrastructural Aspects of the Acetylation of Cellulose,” Cellulose, Vol. 2, No. 2, 1995, pp. 111-127. doi:10.1007/BF00816384
[151] H. Yuan, Y. Nishiyama, M. Wada and S. Kuga, “Surface Acylation of Cellulose Whiskers by Drying Aqueous Emulsion,” Biomacromolecules, Vol. 7, No. 3, 2006, pp. 696-700. doi:10.1021/bm050828j
[152] N. S. Cetin, P. Tingaut, N. Özmen, N. Henry, D. Harper, M. Dadmun and G. Sèbe, “Acetylation of Cellulose Nanowhiskers With Vinyl Acetate under Moderate Conditions,” Macromolecular Bioscience, Vol. 9, No. 10, 2009, pp. 997-1003. doi:10.1002/mabi.200900073
[153] S. Berlioz, S. Molina-Boisseau, Y. Nishiyama and L. Heux, “Gas-Phase Surface Esterification of Cellulose Microfibrils and Whiskers,” Biomacromolecules, Vol. 10, No. 8, 2009, pp. 2144-2151. doi:10.1021/bm900319k
[154] A. de Menezes Jr., G. Siqueira, A. A. S. Curvelo and A. Dufresne, “Extrusion and Characterisation of Functionalised Cellulose Whiskers Reinforced Polyethylene Nanocomposites,” Polymer, Vol. 50, No. 19, 2009, pp. 45524563. doi:10.1016/j.polymer.2009.07.038
[155] S. P. Dong, S. P. and M. Roman, “Fluorescently Labeled Cellulose Nanocrystals for Bioimaging Applications,” Journal of the American Chemical Society, Vol. 129, No. 45, 2007, pp.13810-13811. doi:10.1021/ja076196l
[156] J. Yi, Q. Xu, X. Zhang and H. Zhang, “Chiral-Nematic Self-Ordering of Rodlike Cellulose Nanocrystals Grafted with Poly(Styrene) in Both Thermotropic and Lyotropic States,” Polymer, Vol. 49, No. 20, 2008, pp. 4406-4412. doi:10.1016/j.polymer.2008.08.008
[157] H. Lönnberg, L. Fogelström, M. A. S. A. Samir, L. Berglund, E. Malmström and A. Hult, “Surface Grafting of Microfibrillated Cellulose with Poly(ε-Caprolactone)-Synthesis and Characterization,” European Polymer Journal, Vol. 44, No. 9, 2008, pp. 2991-2997. doi:10.1016/j.eurpolymj.2008.06.023
[158] W. Thielemans, M. N. Belgacem and A. Dufresne, “Starch Nanocrystals with Large Chain Surface Modifications,” Langmuir, Vol. 22, No. 10, 2006, pp. 4804-4810. doi:10.1021/la053394m
[159] F. Azzam, L. Heux, J. L. Putaux and B. Jean, “Preparation by Grafting onto Characterisation, and Properties of Thermally Responsive Polymer-Decorated Cellulose Nanocrystals,” Biomacromolecules, Vol. 11, No. 12, 2010, pp. 3652-3659. doi:10.1021/bm101106c
[160] N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux and J. Y. Cavaillé, “New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene: Effect of Surface and Dispersion Characteristics,” Biomacromolecules, Vol. 6, No. 5, 2005, pp. 2732-2739. doi:10.1021/bm050222v
[161] A. P. Mangalam, J. Simonsen and A. S. Benight, “Cellulose/DNA Hybrid Nanomaterials,” Biomacromolecules, Vol. 10, No. 3, 2009, pp. 497-504. doi:10.1021/bm800925x
[162] J. Wang and K. Matyjaszewski, “Controlled/Living Radical Polymerisation. Atom Transfer Radical Polymerisation in the Presence of Transition-Metal Complexes,” Journal of the American Chemical Society, Vol. 117, No. 20, 1995, pp. 5614-5615. doi:10.1021/ja00125a035
[163] J. Yi, Q. Xu, X. Zhang and H. Zhang, “TemperatureInduced Chiral Nematic Phase Changes of Suspensions of Poly(N,N-Dimethylaminoethyl Methacry-late)-Grafted Cellulose Nanocrystals,” Cellulose, Vol. 16, No. 6, pp. 989997. doi:10.1007/s10570-009-9350-9
[164] G. Chen, A. Dufresne, J. Huang and P. R. Chang, “A Novel Thermoformable Bionanocomposite Based on Cellulose Nanocrystal-Graft-Poly(ε-caprolactone),” Macromolecular Materials and Engineering, Vol. 294, No. 1, 2009, pp. 59-67. doi:10.1002/mame.200800261
[165] N. Lin, G. Chen, J. Huang, A. Dufresne and P. R. Chang, “Effects of Polymer-Grafted Natural Nanocrystals on the Structure and Mechanical Properties of Poly(Lactic Acid): A Case of Cellulose Whisker-Graft-Polycaprolactone,” Journal of Applied Polymer Science, Vol. 113, No. 5, 2009, pp. 3417-3425. doi:10.1002/app.30308
[166] S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund and T. Peijs, “Review: Current International Research into Cellulose Nanofibres and Nanocomposites,” Journal of Materials Science, Vol. 45, No. 1, 2010, pp. 1-33. doi:10.1007/s10853-009-3874-0
[167] M. A. S. A. Samir, F. Alloin and A. Dufresne, “Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field,” Biomacromolecules, Vol. 6, No. 2, 2005, pp. 612-626. doi:10.1021/bm0493685
[168] S. Kamel, “Nanotechnology and Its Applications in Lignocellulosic Composites, a Mini Review,” eXPRESS Polymer Letter, Vol. 1, No. 9, 2007, pp. 546-575.
[169] W. K. Wan and L. Millon, “Poly (Vinyl Alcohol)-Bacterial Cellulose Nanocomposite,” US200900289, 2009.
[170] K. Tetsuo, “Material Comprising Polylactic Acid and Cellulose Fiber,” WO2007136086A1, 2007.
[171] J. M. Catchmark, D. M. Mears, J. Siggins, et al., “Composites Containing Polypeptides Attached to Polysaccharides and Molecules,” WO2011047047A2, 2011.
[172] N. Kotov, B. S. Shim and P. Podsiadlo, “Layer-by-Layer Assemblies Having Preferential Alignment of Deposited Axially Anisotropic Species and Methods for Preparation and Use Thereof,” US20100098902A1, 2010.
[173] K. Oksman, D. Bondeson and P. Syre, “Nanocomposites Based on Cellulose Whiskers and Cellulose Plastics,” US 20080108772A1, 2008.
[174] C. H. Hong and S. Han, “Nylon-4 Composite,” US 2011 0086948A1, 2011.
[175] Y. Oku, “Flexible Substrate and Manufacturing Method Thereof,” US20090202843A1, 2009.
[176] C. Weder, J. Capadona and O. Van Den Berg, “Self-Assembled Nanofibers Templates,” US2008242765A1, 2008.
[177] I. Kvien, B. S. Tanem and K. Oksman, “Characterization of Cellulose Whiskers and Their Nanocomposites by Atomic Force and Electron Microscopy,” Biomacromolecules, Vol. 6, No. 6, 2005, pp. 3160-3165. doi:10.1021/bm050479t
[178] M. A. S. A. Samir, F. Alloin, J. Y. Sanchez, N. El Kissi and A. Dufresne, “Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension,” Macromolecules, Vol. 37, No. 4, 2004, pp. 1386-1393. doi:10.1021/ma030532a
[179] O. Van den Berg, J. R. Capadona and C. Weder, “Preparation of Homogeneous Dispersions of Tunicate Cellulose Whiskers in Organic Solvents,” Biomacromolecules, Vol. 8, No. 4, 2007, pp.1353-1357. doi:10.1021/bm061104q
[180] D. Viet, S. Beck-Candanedo and D. G. Gray, “Dispersion of Cellulose Nanocrystals in Polar Organic Solvents,” Cellulose, Vol. 14, No. 2, 2007, pp.109-113. doi:10.1007/s10570-006-9093-9
[181] J. R. Capadona, O. Van Den Berg, L. A. Capadona, M. Schroeter, S. J. Rowan, D. J. Tyler and C. Weder, “A Versatile Approach for the Processing of Polymer Nanocomposites with Self-Assembled Nanofibre Templates,” Nature Nanotechnology, Vol. 2, No. 12, 2007, pp. 765769. doi:10.1038/nnano.2007.379
[182] O. J. Rojas, G. A. Montero and Y. Habibi, “Electrospun Nanocomposites from Polystyrene Loaded with Cellulose Nanowhiskers,” Journal of Applied Polymer Science, Vol. 113, No. 2, 2009, pp. 927-935. doi:10.1002/app.30011
[183] J. O. Zoppe, M. S. Peresin, Y. Habibi, R. A. Venditti and O. J. Rojas, “Reinforcing Poly(ε-caprolactone) Nanofibers With Cellulose Nanocrystals,” ACS Applied Materials Interfaces, Vol. 1, No. 9, 2009, pp. 1996-2004. doi:10.1021/am9003705
[184] W. I. Park, M. Kang, H. S. Kim and H. J. Jin, “Electrospinning of Poly(Ethylene Oxide) with Bacterial Cellulose Whiskers,” Macromolecular Symposia, Vol. 249-250, No. 1, 2007, pp. 289-294. doi:10.1002/masy.200750347
[185] W. L. E. Magalhäes, X. Cao and L. A. Lucia, “Cellulose Nanocrystals/Cellulose Core-in-Shell Nanocomposite Assemblies,” Langmuir, Vol. 25, No. 22, 2009, pp. 1325013257. doi:10.1021/la901928j
[186] M. Schroers, A. Kokil and C. Weder, “Solid Polymer Electrolytes Based on Nanocomposites of Ethylene Oxide-Epichlorohydrin Copolymers and Cellulose Whiskers,” Journal of Applied Polymer Science, Vol. 93, No. 6, 2004, pp. 2883-2888. doi:10.1002/app.20870
[187] K. Oksman, A. P. Mathew, D. Bondeson and I. Kvien, “Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites,” Composites Science and Technology, Vol. 66, No. 15, 2006, 2776-2784. doi:10.1016/j.compscitech.2006.03.002
[188] D. Bondeson and K. Oksman, “Polylactic Acid/Cellulose Whisker Nanocomposites Modified by Polyvinyl Alcohol,” Composites Science and Technology, Vol. 38, No. 12, 2007, pp. 2486-2492. doi:10.1016/j.compositesa.2007.08.001
[189] S. Iwamoto, K. Abe and H. Yano, “The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics,” Biomacromolecules, Vol. 9, No. 3, 2008, pp. 1022-1026. doi:10.1021/bm701157n
[190] Y. Shimazaki, Y. Miyazaki, Y. Takezawa, M. Nogi, K. Abe, S. Ifuku and H. Yano, “Excellent Thermal Conductivity of Transparent Cellulose Nanofiber/Epoxy Resin Nanocomposites,” Biomacromolecules, Vol. 8, No. 9, 2007, pp. 2976-2978. doi:10.1021/bm7004998
[191] M. Nogi, K. Handa, A. N. Nakagaito and H. Yano, “Optically Transparent Bionanofiber Composites with Low Sensitivity to Refractive Index of the Polymer Matrix,” Applied Physics Letter, Vol. 87, No. 24, 2005, pp. 243110243112. doi:10.1063/1.2146056
[192] A. Nakagaito and H. Yano, “Toughness Enhancement of Cellulose Nanocomposites by Alkali Treatment of the Reinforcing Cellulose Nanofibers,” Cellulose, Vol. 15, No. 2, 2008, pp. 323-331. doi:10.1007/s10570-007-9168-2
[193] M. Özgür Seydibeyoglu and K. Oksman, “Novel Nanocomposites Based on Polyurethane and Micro Fibrillated Cellulose,” Composites Science and Technology, Vol. 68, No. 3-4, 2008, pp. 908-914. doi:10.1016/j.compscitech.2007.08.008
[194] M. Henriksson, L. A. Berglund, P. Isaksson, T. Lindstrom and T. Nishino, “Cellulose Nanopaper Structures of High Toughness,” Biomacromolecules, Vol. 9, No. 6, 2008, pp. 1579-1585. doi:10.1021/bm800038n
[195] A. N. Nakagaito and H. Yano, “The Effect of Fiber Content on the Mechanical and Thermal Expansion Properties of Biocomposites Based on Microfibrillated Cellulose,” Cellulose, Vol. 15, No. 4, 2008, pp.555-559. doi:10.1007/s10570-008-9212-x
[196] M. Nogi, S. Ifuku, K. Abe, K. Handa, A. N. Nakagaito and H. Yano, “Fiber-Content Dependency of the Optical Transparency and Thermal Expansion of Bacterial Nanofiber Reinforced Composites,” Applied Physics Letter, Vol. 88, No. 13, 2006, pp. 133121-133124.
[197] P. Podsiadlo, S. Choi, B. Shim, J. Lee, M. Cuddihy and N. A. Kotov, “Molecularly Engineered Nanocomposites: Layer-By-Layer Assembly of Cellulose Nanocrystals,” Biomacromolecules, Vol. 6, No. 6, 2005, pp. 2914-2918. doi:10.1021/bm050333u
[198] B. Jean, F. Dubreuil, L. Heux and F. Cousin, “Structural Details of Cellulose Nanocrystals/Polyelectrolytes Multilayers Probed by Neutron Reflectivity and AFM,” Langmuir, Vol. 24, No. 7, 2008, pp.3452-3458. doi:10.1021/la703045f
[199] E. D. Cranston and D. G. Gray, “Formation of CelluloseBased Electrostatic Layer-By-Layer Films in a Magnetic Field,” Science and Technology of Advanced Materials, Vol. 7, No. 4, 2006, pp. 319-321. doi:10.1016/j.stam.2006.02.007
[200] E. D. Cranston and D. G. Gray, “Birefringence in SpinCoated Films Containing Cellulose Nanocrystals,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 325, No. 1-2, 2008, pp. 44-51. doi:10.1016/j.colsurfa.2008.04.042
[201] S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna and E. Nassiopoulos, “CelluloseBased Bioand Nanocomposites: A Review,” International Journal of Polymer Science, Vol. 2011, 2011, pp. 1-35. doi:10.1155/2011/837875
[202] R. J. Moon, A. Martini, J. Nairn, J. Simonsen and Jeff Youngblood, “Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites,” Chemical Society Reviews, Vol. 40, No. 7, 2011, pp. 3941-3994. doi:10.1039/c0cs00108b
[203] J. D. Fontana, A. M. de Souza, C. K. Fontana, et al., “Acetobacter Cellulose Pellicle as a Temporary Skin Substitute,” Applied Biochemistry and Biotechnology, Vol. 24-25, No. 1, 1990, pp: 253-264. doi:10.1007/BF02920250
[204] F. C. Tournilhac and R. Lorant, “Oil-in-Water Emulsion Composition Containing Cellulose Fibrils and Cosmetic Use Thereof,” EP1057477A1, 2000.
[205] L. R. Mello, Y. Feltrin, R. Selbach, G. Macedo Jr., C. Spautz and L. J. Haas, “Use of Lyophilized Cellulose in Peripheral Nerve Lesions with Loss of Substance,” Arquivos de Neuro-Psiquiatria, Vol. 59, No. 2B, 2001, pp. 372-379. doi:10.1590/S0004-282X2001000300012
[206] D. Klemm, D. Schumann, U. Udhardt and S. Marsch, “Bacterial Synthesized Cellulose-Artificial Blood Vessels for Microsurgery,” Progress in Polymer Science, Vol. 26, 2001, pp.1561-1603.doi:10.1016/S0079-6700(01)00021-1
[207] M. A. Croce, C. Silvestri, D. Guerra, et al., “Adhesion and Proliferation of Human Dermal Fibroblasts on Collagen Matrix,” Journal of Biomaterials Applications, Vol. 18, No. 3, 2004, pp. 209-222. doi:10.1177/0885328204039692
[208] S. W. Negrao, R. R. L. Bueno, E. E. Guérios, et al., “A Eficacia do Stent Recoberto com Celulose Biossint′etica Comparado ao Stent Convencional em Angioplastia em Coelhos,” Revista Brasileira de Cardiologia Invasiva, Vol. 14, 2006, pp.10-19.
[209] W. K. Czaja, D. J. Young, M. Kawecki and R. M. Brown “The Future Prospects of Microbial Cellulose in Biomedical Applications,” Biomacromolecules, Vol. 8, No. 1, 2007, pp. 1-12. doi:10.1021/bm060620d
[210] R. Kozlowski, B. Laszkiewic, P. Kulpinski, et al., “Method of Manufacturing Silver Nanoparticles, Cellulosic Fibers and Nanofibers Containing Silver Nanoparticles, Use of Silver Nanoparticles to the Manufacture of Cellulosic Fibers and Nanofibers,” WO2008100163A1, 2008.
[211] C. Narayana, “Nanoparticle Composition, Useful for Manufacturing Antibacterial Medicament, Which Is Useful in e.g. Medical Applications e.g. Wound Dressing, Comprises Cellulose Nanofibers Embedded with Nanosized Material e.g. Silver,” WO2009063508A2, 2009.
[212] M. P. Laborie and E. Brown, “Method of in Situ Bioproduction and Composition of Bacterial Cellulose Nanocomposites,” US2009192264A1, 2009.
[213] C. Narayana, “Nanoparticle Composition and Process Thereof,” US2010233245A1, 2010.
[214] B. Chu, B. S. Hsiao and H. Ma “High Flux High Efficiency Nanofiber Membranes and Methods of Production Thereof,” WO2010042647A2, 2010.
[215] E. Andersen “Skin Care Compositions for the Delivery of Agents,” WO2010115426A1, 2010.
[216] W. A. W. I. Thielemans and R. Davies, “Cellulose Nanoparticle Aerogels, Hydrogels and Organogels,” WO2011 030170A1, 2011.
[217] B. Chu, B. S. Hsiao and H. Ma, “High Flux High Efficiency Nanofiber Membranes and Methods of Production thereof,” WO2010042647A2, 2010.
[218] B. Chu, B. Hsiao and H. Ma, “High Flux Fluid Separation Membranes Comprising a Cellulose or Cellulose Derivative Layer,” WO2009025900A2, 2009.
[219] E. E. Koslow, “Microporous Filter Media, Filtration Systems Containing Same, and Methods of Making and Using,” US2003205530A1, 2003.
[220] D. Klemm, F. Kramer, S. Moritz, et al., “Nanocelluloses: A New Family of Natural-Based Materials,” Angewandte Chemie International Edition, Vol. 50, No. 24, 2011, pp. 5438-5466. doi:10.1002/anie.201001273
[221] N. Bordeanu, C. Eyholzer and T. N. N. Zummerma. “Surface Modified Cellulose Nanofibers,” WO2010066905A1, 2010.
[222] M. M. Sain and A. R. Bhatnaga, “Manufacturing Process of Cellulose Nanofibers from Renewable Feed Stocks,” US2008146701A1, 2008.
[223] A. Ogino, Y. A. Midorikaw, A. Chatani, et al., “Paper for Recording of Information and Processed Paper,” WO 2011001706A1, 2011.
[224] M. H. F. Godinho, J. P. B. M. Ribeiro, S. Kundu, et al., “Difusor óptico Baseado em Nanofibras de Celulose e Cristais Líquidos Controlado por um Campo Externo,” PT104122A, 2010.
[225] Y. Oku, “Flexible Substrate and Manufacturing Method Thereof,” US2009202843A1, 2009.
[226] S. Rousseau and B. Tolnai “Method of Manufacturing Nano-Crystalline Cellulose Film,” US2010124651A1, 2010.
[227] S. Rebouillat, M. Escoubes, R. Gauthier and A. Vigier, “Thermally Induced Changes in Kevlar® Fibre Surface Evidenced by Inverse Gas Chromatography,” Polymer, Vol. 36, 1995, pp. 4521-4523. doi:10.1016/0032-3861(95)96863-4
[228] S. Rebouillat, M. Escoubes, R. Gauthier and A. Vigier, “Surface Energy Mapping of Kevlar® Fibers by Inverse Gas Chromatography,” Journal of Applied Polymer Science, Vol. 58, No. 8, 1995, pp. 1305-1315. doi:10.1002/app.1995.070580812
[229] S. Rebouillat, J. B. Donnet, H. Guo and T. K. Wang, “Surface Energy Mapping of Kevlar® Fibers by Inverse Gas Chromatography,” Journal of Applied Polymer Science, Vol. 67, No. 3, 1998, pp. 487-500. doi:10.1002/(SICI)1097-4628(19980118)67:3<487::AID-APP12>3.0.CO;2-T
[230] S. Rebouillat, J. B. Donnet and T. K. Wang, “Surface Microstructure of a Kevlar® Aramid Fibre Studied by Direct Atomic Force Microscopy,” Polymer, Vol. 38, No. 9, 1997, pp. 2245-2249. doi:10.1016/S0032-3861(96)00768-9
[231] S. Rebouillat, J. C. M. Peng and J. B. Donnet, “Surface Structure of Kevlar® Fiber Studied by Atomic Force Microscopy and Inverse Gas Chromatography,” Polymer, Vol. 40, No. 26, 1999, pp. 7341-7350. doi:10.1016/S0032-3861(99)00040-3
[232] S. Rebouillat, M. Escoubes and R. Gauthier, “Interactions of Kevlar® Fibers with Selected Model Compounds: Water Sorption and Dynamic Mechanical Properties of Fiber/Matrix Samples,” Journal of Adhesion Science and Technology, Vol. 10, No. 7, 1996, pp. 635-650. doi:10.1163/156856196X00689
[233] S. Rebouillat, “Tribolog-ical Properties of Woven ParaAramid Fabrics and Their Constituent Yarns,” Journal of Materials Science, Vol. 33, No. 13, 1998, pp. 3293-3301. doi:10.1023/A:1013225027778
[234] S. Rebouillat, “Aramids,” In: J. W. S. Hearle, Ed., High Performance Fibres, Woodhead Publishing Limited, Sawston, 2001, pp. 23-61.
[235] S. Rebouillat, et al., Eds., “Carbon Fibers,” Marcel Deckert, 1998.
[236] S. Rebouillat and M. E. G. Lyons, “Measuring the Electrical Conductivity of Single Fibres,” International Journal of Electrochemical Science, Vol. 6, No. 11, 2011, pp. 5731-5740
[237] M. E. G. Lyons and S. Rebouillat, “Paving the Way to the Integration of Smart Nanostructures. Part 1: Nanotethering and Nanowiring via Material Nanoengineering and Electrochemical Identification,” International Journal of Electrochemical Science, Vol. 4, 2009, pp. 481-515.
[238] S. Rebouillat, M. E. G. Lyons, B. M. P. Doyle and L. Richard, “Paving the Way to the Integration of Smart Nanostructures: Part II: Nanostructured Microdispersed Hydrated Metal Oxides for Electrochemical Energy Conversion and Storage Applications,” International Journal of Electrochemical Science, Vol. 6, 2011, pp. 5830-5917
[239] S. Rebouillat, B. Steffenino and B. Letellier, “Hydrodynamics of High Speed Fibre Impregnation,” Chemical Engineering Science, Vol. 55, No. 1, 2000, pp. 15-24. doi:10.1016/S0009-2509(99)00186-4
[240] S. Rebouillat, B. Steffenino and B. Salvador, “Hydrodynamics of High-Speed Fibre Impregnation: The Fluid Layer Formation from the Meniscus Region,” Chemical Engineering Science, Vol. 57, No. 18, 2002, pp. 39533966. doi:10.1016/S0009-2509(02)00309-3
[241] S. Rebouillat, B. Letellier and B. Steffenino, “Wettability of Single Fibres—Beyond the Contact Angle Approach,” International Journal of Adhesion and Adhesives, Vol. 19, No. 4, 1999, pp. 303-314.
[242] S. Rebouillat, “Tribological Properties of Woven ParaAramid Fabrics and Their Constituent Yarns,” Journal of Materials Science, Vol. 33, No. 13, 1998. pp. 3293-3301.
[243] S. Rebouillat, M. Escoubes and R. Gauthier, “Interactions of Kevlar® Fibers with Selected Model Compounds: Water Sorption and Dynamic Mechanical Properties of Fiber/Matrix Samples,” International Journal of Adhesion and Adhesives, Vol. 10, No. 7, 1996, pp. 635-650 doi:10.1163/156856196X00689
[244] S. Rebouillat, D. Liksonov and A. Courgey, “New Experimental Device to Test the Dynamic Behavior of Fiber Assemblies and Fibrous Composite Structures with a Focus on Larger Industrial-Scale-Like Samples,” Journal of Applied Polymer Science, Vol. 123, No. 3, 2012. pp. 17081717. doi:10.1002/app.34626
[245] S. Rebouillat, B. Steffenino and A. Miret-Casas, “Aramid, Steel, and Glass: Characterization via Cut Performance Testing, of Composite Knitted Fabrics and Their Constituent Yarns, with a Review of the Art,” Journal of Materials Science, Vol. 45, No. 19, 2010, pp. 5378-5392. doi:10.1007/s10853-010-4590-5
[246] D. A. Buttry, J. C. M. Peng, J.-B. Donnet and S. Rebouillat, “Immobilization of Amines at Carbon Fiber Surfaces,” Carbon, Vol. 37, No. 12, 1999, pp. 1929-1940. doi:10.1016/S0008-6223(99)00064-0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.