Comparative Study on Bactericidal Effect of Silver Nanoparticles, Synthesized Using Green Technology, in Combination with Antibiotics on Salmonella Typhi

Abstract

In this work bactericidal study of silver nanoparticles was taken up in combination with two standard antibiotics, ampicillin and gentamycin, for Salmonella Typhi. The antibacterial activities of antibiotics were increased in the presence of AgNPs against test strains. The higher enhancing effect was observed for ampicillin in comparison to gentamicin against test strains. Silver nanoparticles were synthesized elctrolytically using silver wire of 99% purity as anode and carbon rod wrapped with LDPE as cathode. Silver nitrate [of Merck] of 0.01N is used as an electrolyte. Here tea extract is added as capping and mild reducing agent. The polyphenols theaflavins and thearubigins, present in tea perform the role of stabilizing or capping agents due to their bulky and steric nature. A brown coloured colloidal solution of silver nanoparticles is obtained. The as-synthesized silver nanoparticles were characterized using XRD, TEM and UV-Vis spectroscopy.

Share and Cite:

S. Rajawat and M. Qureshi, "Comparative Study on Bactericidal Effect of Silver Nanoparticles, Synthesized Using Green Technology, in Combination with Antibiotics on Salmonella Typhi," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4, 2012, pp. 480-485. doi: 10.4236/jbnb.2012.34049.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. Saifuddin, C. W. Wong and A. A. Nur Yasumira, “Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation,” E-Journal of Chemistry, Vol. 6, No. 1, 2009, pp. 61-70. doi:10.1155/2009/734264
[2] A. Pal, S. Shah and S. Devi, “Preparation of Silver, Gold and Silver-Gold Bimetallic Nanoparticles in Micro Emulsion Containing TritonX-100,” Colloids and Surfaces A, Vol. 302, No. 1, 2007, pp. 483-487. doi:10.1016/j.colsurfa.2007.03.032
[3] M. J. Rosemary and T. Pradeep, “Solvothermal Synthesis of Silver Nanoparticles from Thiolates,” Colloids and Surfaces A, Vol. 268, No. 1, 2003, pp. 81-84. doi:10.1016/j.jcis.2003.08.009
[4] Y. Xie, R. Ye and H. Liu, “Synthesis of Silver Nanoparticles in Reverse Micelles Stabilized by Natural Biosurfactant,” Colloids and Surfaces A, Vol. 279, No. 1, 2006, pp. 175-178. doi:10.1016/j.colsurfa.2005.12.056
[5] M. Maillard, S. Giorgo and M. P. Pileni, “Silver Nano Disks,” Advanced Materials, Vol. 14, No. 15, 2002, pp. 1084-1086. doi:10.1002/1521-4095(20020805)14:15<1084::AID-ADMA1084>3.0.CO;2-L
[6] Z. S. Pillai and P. V. Kamat, “What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method?” The Journal of Physical Chemistry B, Vol. 108, No. 3, 2004, pp. 945-951. doi:10.1021/jp037018r
[7] K. Patel, S. Kapoor, D. P. Dave and T. Murherjee, “Synthesis of Nanosized Silver Colloids by Microwave Dielectric Heating,” Journal of Chemical Sciences, Vol. 117, No. 1, 2005, pp. 53-60. doi:10.1007/BF02704361
[8] R. A. Salkar, P. Jeevanandam, S. T. Aruna, Y. Koltypin and A. Gedanken, “The Sonochemical Preparation of Amorphous Silver Nanoparticles,” Journal of Materials Chemistry, Vol. 9, No. 6, 1999, pp. 1333-1335. doi:10.1039/a900568d
[9] B. Soroushian, I. Lampre, J. Belloni and M. Mostafavi, “Radiolysis of Silver Ion Solutions in Ethylene Glycol: Solvated Electron and Radical Scavenging Yields,” Radiation Physics and Chemistry, Vol. 72, No. 2-3, 2005, pp. 111-118. doi:10.1016/j.radphyschem.2004.02.009
[10] M. Starowicz, B. Stypula and J. Banaoe, “Electrochemical Method for the Synthesis of Silver Nanoparticles,” Journal of Electrochemistry Communications, Vol. 8, No. 2, 2006, pp. 227-230. doi:10.1016/j.elecom.2005.11.018
[11] J. J. Zhu, X. H. Liao, X. N. Zhao and H. Y. Hen, “Preparation of Silver Nanorods by Electrochemicall Methods,” Materials Letters, Vol. 49, No. 2, 2001, pp. 91-95. doi:10.1016/S0167-577X(00)00349-9
[12] S. Liu, S. Chen, S. Avivi and A. Gendanken, “Synthesis of X-Ray Amorphous Silver Nanoparticles by the Pulse Sonoelectrochemical Method,” Journal of Non-Crystal-line Solids, Vol. 283, No. 1, 2001, pp. 231-236. doi:10.1016/S0022-3093(01)00362-3
[13] D.-C. Tien, C.-Y. Liao, J.-C. Huang, K.-H. Tseng, J.-K. Lung, T.-T. Tsung1, W.-S. Kao. T.-H. Tsai, T.-W. Cheng, B.-S. Yu, H.-M. Lin and L. Stobinski, “Novel Technique for Preparing a Nano Silver Water Suspension by Arc-Discharge Method,” Reviews on Advanced Materials Science, Vol. 18, No. 8, 2008, pp. 750-756
[14] D. Manish, B. Seema and B. S. kushwaha, “Green Synthesis of Nanosilver Particles from Extract of Eucalyptus Hybrida (Safeda) Leaf Digest,” Journal of Nanomaterials and Biostructures, Vol. 4, No. 3, 2009, pp. 537-543.
[15] S. P. Chandran, M. Chaudhary and R. Pasricha, “Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe Vera Plant Extract,” Biotechnology Progress, Vol. 22, No. 2, 2006, pp. 577-583. doi:10.1021/bp0501423
[16] I. Pastoriza-Santos and L. M. Liz-Marzán, “Formation and Characterization of Silver Nanoparticles in DMF with Shape Control,” 2005. http://nanospainconf.org/2005/Files/Orales/Nanochemistry/Pastoriza_Isabel.pdf
[17] N. Nino-Martinez, G. A. Martinez-Castanon, A. Aragon-Pina, F. Martinez-Gutierrez, J. R. Martinez-Mendoza and F. Ruiz, “Characterization of Silver Nanoparticles Synthesized on Titanium Dioxide Fine Particles,” Nanotechnology, Vol. 19, No. 6, 2008, pp. 065711/1-065711/8. doi:10.1088/0957-4484/19/6/065711
[18] V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein, et al., “An In Vitro Assessment of the Antibacterial Properties and Cytotoxicity of Nanoparticulate Silver Bone Cement,” Biomaterials, Vol. 25, No. 18, 2004, pp. 4383-4391. doi:10.1016/j.biomaterials.2003.10.078
[19] A. D. Russell and W. B. Hugo, “7 Antimicrobial Activity and Action of Silver,” Progress in Medicinal Chemistry, Vol. 31, 1994, pp. 351-370. doi:10.1016/S0079-6468(08)70024-9
[20] H. Y. Lee, H. K. Park, Y. M. Lee, K. Kim and S. B. Park, “A Practical Procedure for Producing Silver Nanocoated Fabric and Its Antibacterial Evaluation for Biomedical Applications,” Chemical Communications, Vol. 28, 2007, pp. 2959-2961. doi:10.1039/b703034g
[21] S. Jeong, S. Yeo and S. Yi, “The Effect of Filler Particle Size on the Antibacterial Properties of Compounded Polymer/Silver Fibers,” Journal of Materials Science, Vol. 40, No. 20, 2005, pp. 5407-5411. doi:10.1007/s10853-005-4339-8
[22] W.-L. Chou, D.-G. Yu and M.-C. Yang, “The Preparation and Characterization of Silver-Loading Cellulose Acetate Hollow Fiber Membrane for Water Treatment,” Polymers for Advanced Technologies, Vol. 16, No. 8, 2005, pp. 600-607. doi:10.1002/pat.630
[23] M. Jin, X. Zhang, S. Nishimoto, Z. Liu, D. A. Tryk, A. V. Emeline, et al., “Light-Stimulated Composition Conversion in TiO2-Based Nanofibers,” Journal of Physical Chemistry C, Vol. 111, No. 2, 2007, pp. 658-665. doi:10.1021/jp065590n
[24] Q. Chen, L. Yue, F. Xie, M. Zhou, Y. Fu, Y. Zhang, et al., “Preferential Facet of Nanocrystalline Silver Embedded in Polyethylene Oxide Nanocomposite and Its Antibiotic Behaviors,” Journal of Physical Chemistry C, Vol. 112, No. 27, 2008, pp. 10004-10007. doi:10.1021/jp800306c
[25] E. Parameswari, C. Udayasoorian, S. P. Sebastian and R. M. Jayabalakrishnan, “The Bactericidal Potential of Silver Nanoparticles,” International Research Journal of Biotechnology, Vol. 1, No. 3, 2010, pp. 044-049.
[26] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, et al., “Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs),” Journal of Physical Chemistry C, Vol. 112, No. 15, 2008, pp. 5825-5834. doi:10.1021/jp711616v
[27] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. Kouri, J. T. Ramirez, et al., “The Bactericidal Effect of Silver Nanoparticles,” Nanotechnology, Vol. 16, No. 10, 2005, p. 2346. doi:10.1088/0957-4484/16/10/059
[28] D. Suchitra, A. B. N. Nageswara Rao, A. Ravindranath, S. Sakunthala Madhavendra and V. Jayathirtha Rao, “Silver Nanoparticle Synthesis From Lecanicillium Lecanii and Evalutionary Treatment on Cotton Fabrics by Measuring Their Improved Antibacterial Activity with Antibiotics against Staphylococcus Aureus (ATCC 29213) And E. Coli (ATCC 25922) Strains,” International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 3, No. 4, 2011, pp. 190-195.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.