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Introduction
Myotonic dystrophy (DM) is an autosomal dominant, multisystem 

disorder characterized by muscle weakness and myotonia commonly 
beginning in early adulthood, however, the most dramatic presentations 
of myotonic dystrophy is that occurring in the neonatal period, or 
Congenital Myotonic Dystrophy (CDM, OMIM 160900). 

Two loci for the dystrophic myotonias are known and described as 
DM1 and DM2. At both loci inheritance is autosomal dominant, with 
DM1 associated with a CTG trinucleotide expansion on chromosome 
19q13.3 and DM2 with a CCTG tetranucleotide expansion at 3q21. 
DM2 is not associated with a CDM phenotype, (although neonatal club 
foot has been once reported [1]) and so it will not be discussed further, 
however much of the discussion on pathogenesis related to DM1 is 
applicable to DM2, as will become evident below.

DM1 is the most commonly encountered hereditary muscle disease 
in adults with an incidence of 1/8000 [2]. Most adults will present with 
mild distal limb and facial weakness that is slowly progressive. Grip 
myotonia, or an inability of muscle relaxation following contraction, 
is another commonly recognized early symptom. Other associated 
symptoms include: cataract formation, premature balding, insulin 
resistance, male infertility, cardiac arrhythmias, dysphagia and 
hypersomnolence. The clinical presentation is variable both in its 
severity and age of onset and many adults at presentation are not fully 
aware of the degree of their motor impairment. Due to the variable 
symptoms and severity, many affected families may only recognize the 
disease when confronted with a child with CDM. 

This review will cover the genetic and pathophysiologic aspects 
of myotonic dystrophy in addition to the epidemiologic and clinical 
aspects of the congenital form of DM. For the section specifically 
on CDM a systematic search of articles using the terms “congenital 
myotonic dystrophy” and “congenital DM1” in MEDLINE-Ovid, 
EMBASE, Pubmed, Cochrane Library and PsychINFO was performed 
and reference lists searched.

Genetics and Pathophysiology
The gene associated with DM1 is the Myotonic Dystrophy Protein 

Kinase (DMPK) gene and codes for a 75-80 kDa protein kinase that 

is located principally in heart and skeletal muscle, with much smaller 
amounts expressed in smooth muscle and non-muscle tissues [3]. The 
normal protein localizes to neuromuscular junctions [4], sarcoplasmic 
reticulum [5] and intercalated discs in the heart myocyte [6]. The 
functions of DMPK are manifold including: cell shape determination 
[4,7] and effects on excitation coupling through calcium homeostasis 
[8]. 

Myotonic dystrophy is considered a disease of unstable nucleotide 
repeat expansion and the specific pathophysiology of DM1 will be 
described, however the interested reader is directed toward published 
general reviews on nucleotide repeat disorders [9,10]. The genetic 
defect in DM1 is unique in that the area of abnormally expanded 
CTG nucleotides is located in a 3’ intron, or an untranslated region 
of the gene. This repeated region of CTG nucleotides exists in most 
people with a normal range of 3-35 repeats. The premutation state is 
considered at a range of 36-50 repeats. The disease DM1 is seen with 
repeat numbers greater than 50, with increased severity (potentiation) 
and earlier age of onset (anticipation) associated with larger repeats. 
This relationship is true within a kindred, although the correlation 
is less than perfect when individuals with similar repeat size from 
different kindred’s are examined. Classic adult onset disease is typically 
associated with a repeat size of 100-1000, whereas those with childhood 
or congenital onset usually have over 1000 repeats. Ascertainment 
of CTG repeat lengths is based principally on serum testing and 
one should be aware that different tissue types may display somatic 
mosaicism with varied degrees of CTG expansion [11]. A reference 
showing different classification systems used to group repeat expansion 
sizes is provided in Table 1. 

The principal pathogenesis is related to the effects of large 
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accumulations of mutant mRNA in the nucleus of cells. Discovery of the 
responsible gene for DM2 in a completely different area of the genome 
with a similar type of repeat expansion, a tetranucleotide, CCTG, with 
nuclear similar inclusions supports this theory. In accordance with this 
theory when large CTG trinucleotide expansions were added to the 
genome of mice (HSA-LR mouse model) they produced symptoms of 
myotonia and muscle degeneration [12]. Further to these observations 
it has been shown that large mRNA (messenger RNA) sequences form 
hairpin configurations that cannot pass normally into the cytoplasm 
for translation, with accumulation of abnormal mRNA inclusions [13]. 

This mutant mRNA has an impact on a class of nuclear proteins 
called mRNA binding proteins. Messenger-RNA binding proteins have 
a number of important cellular functions, but the splicing of mRNA 
into different isoforms is particularly relevant to DM1. Coding RNA 
can be destined for several different forms of end product protein 
depending on tissue type and developmental stage as well as other 
environmental factors and the mRNA binding protein is vital in 
regulating the expression of the appropriate final protein based on 
splicing patterns [14]. The Muscleblind (MBNL) family and CUG-
binding protein 1 (CUG-BP1), are two such proteins implicated in 
the pathophysiology of DM1. The mutant mRNA binds specifically to 
MBNL1 protein, and sequesters this protein in the large nuclear mRNA 
inclusions. The consequences of reduced MBNL1 protein has been 
examined in both a MBNL1 knockout and HSA-LR mouse models 
which demonstrated phenotypic and mRNA splicing differences 
seen in DM1 and other mouse models of DM1 [15,16]. The splicing 
differences induced by a reduction in MNBL are directed toward an 
arrest of the normal transition to adult isoforms of a set of MNBL 
sensitive proteins [15]. More recently in the HSA-LR model it has been 
demonstrated that when MNBL is over-expressed, by transduction 
with an adenoviral vector injected into the tibialis anterior muscle, in 
an effort to supersaturate the mutant mRNA nuclear inclusions, the 
cellular consequences of mutant mRNA can be reversed [17]. In this 
study not only were protein splicing patterns reversed, but myotonic 
discharges on EMG improved as well, for a period of 43 weeks. 

In contrast toxic mRNA acts to increase activity of CUG-BP1. 
Enhanced activity levels of CUG-BP1 causes RNA splicing changes that 
appear to be equally responsible for the DM1 phenotype [14]. Recently 
Ho [18] has shown that proteins normally altered by CUG-BP1 may be 
subject to splicing patterns that are directed toward the fetal isoforms 
of the protein, which could help to explain the immature muscle 
pattern is seen in those with congenital DM. Interestingly, only in DM1 
are CUG-BP1 binding protein concentrations elevated and thus may 
explain the differences seen between DM1 and DM2, including the 
presence of a pediatric and congenital form of the disease. In support of 
increased CUG-BP1 being a primary determinant of DM1, Mahadevan 
[19] induced DM1-like phenotypes and splicing patterns in a mouse 
model with over expression of CUG-BP1. This unique model created 
the high cellular concentrations of CUG-BP1 via inducible over 

expression of short segment CUG repeat mRNA (short segments were 
slightly expanded mRNA but were not long enough to form nuclear 
inclusions or sequester MNBL). The altered splicing, muscle histology 
and cardiac conduction defects induced by high CUG-BP1 in this 
model were also reversible once expression was turned off.

A balance between the roles of MNBL and CUG-BP1 appears to 
exist. Under expression of MNBL or over expression of CUG-BP1 in 
mouse models, or a combination of both situations as exists in human 
DM1, manifests in a multisystem illness due to modifications of RNA 
splicing. In DM1, one function that is disrupted is the transport of 
chloride channels to the myofiber membrane with resultant impaired 
chloride conductance, which leads to myotonia in DM1. Many other 
proteins are altered in both DM1 and animal models including insulin 
receptors [20], calcium channels on the sarcoplasmic reticulum [15], 
BIN1 [21] and cardiac troponin transcripts [18]. Even MNBL1 splicing 
itself seems to be influenced by MNBL1 [15]. Splicing abnormalities 
in the glutamate NMDA receptor in the CNS, tau protein [22,23] and 
SLITRK [24] may be the reason for cognitive impairment and other 
brain abnormalities.

At this time there are no clinically available curative or disease 
modifying therapies for DM, however, understanding the molecular 
pathogenesis will generate rationale therapeutic targets that are 
described in a recent comprehensive review article [25].

Congenital Myotonic Dystrophy
In DM1, increasing severity and earlier age of onset can occur over 

subsequent generations as the unstable trinucleotide repeat carried by 
the parent, almost always the mother, expands with gametogenesis. This 
phenomenon is known as genetic anticipation and leads eventually to 
an infant with congenital myotonic dystrophy (CDM). First described 
in 1960 [26], a wide clinical spectrum is recognized but the classic 
symptoms are hypotonia, weakness, feeding difficulties and mechanical 
respiratory failure requiring intubation and ventilation immediately 
after birth. 

Currently, it is not clear if the pathogenesis of CDM is similar 
to adult DM. The clinical features are different, with hypotonia and 
weakness involving proximal and distal muscles and no myotonia 
initially in CDM. Also other system involvement is much less common 
with the exception of cardiac conduction defects and cognitive 
impairment. Furthermore, clinical investigations have shown a pattern 
of muscle strength improvement in the first years of life prior to gradual 
progressive wasting and weakness similar to that seen in adults. 

The muscle histology also differs with no evidence of dystrophic 
changes, but rather features of a more immature muscle pattern with 
central nuclei and peripheral sarcoplasmic halos in small round fibres 
resembling normal myotubes [11,27]. Ultrastructurally, there is a 
reduction seen in the contractile elements in both skeletal and cardiac 
muscle [11]. This muscle immaturity appears to improve which has 
been demonstrated in patients undergoing successive muscle biopsy 
[28]. Other tissue types may also show unexpected degrees of histologic 
immaturity as well such as lungs [11]. Research has suggested that 
CDM satellite cells give rise to myoblasts that have poor differentiation, 
impaired cell fusion and reduced regenerative capacity [29], and to date 
emerging evidence suggests a role of DMPK in myotube formation and 
changes in amount and localization during muscle cell differentiation 
[4]. In those with CDM in the first months of life DMPK staining 
appears weak, whereas by 2 to 9 years of age there is a more normal 
staining pattern of DMPK in the muscle sarcolemma [30]. Whereas in 

Scale 
Classification

Approximate 
number of repeats

Approximate size 
of expansion 
(Kilobase)

Usual Clinical 
phenotype

E0 35  to <50 No obvious expansion Pre-mutation
E1 50  to <500 0<1.5 kilobase Classic adult onset
E2 500  to <1000 1.5<3.0 kb Adolescent onset

E3 1000  to <1500 3.0<4.5 kb Childhood and 
congenital onset

E4
Equal or >1500 
repeats >4.5 kb Congenital onset

Table 1: Comparison of classification systems for myotonic dystrophy.
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adult DM1 there is typically an under-expression of DMPK transcript, 
both over and under-expression has been demonstrated in those with 
CDM [31,32]. In myoblast cell lines an over-expression of full length 
DMPK cDNA caused poor myoblast fusion potential [33], which the 
authors suggest may be a factor in CDM patients.

In keeping with the adult form of DM1, expanded mutant mRNA 
appears to accumulate in the nucleus [29], and insulin receptor isoforms 
are different in CDM muscle than controls [31]. Little is known about 
other mRNA splicing patterns or outcomes on cellular proteins and 
channels in CDM muscle. However, one study examining mRNA 
splicing differences in Myotubularin Related Protein 1 (MTMR1), from 
four CDM subjects all had splicing abnormalities not seen in controls 
or in those with congenital myotubular myopathy [34]. If MTMR1 is 
important in myocyte maturation, as suggested, then splicing defects 
appear to be a precipitant for muscle immaturity. Sodium channel 
density is reduced and faster recovery rate compared to controls have 
been shown in CDM muscle culture, which may be due to splicing 
differences or abnormal regulation by DMPK [35]. 

In the past there was a question of a potential maternal factor that 
accounted for the maternal transmission in CDM and it appeared that 
serum from mothers of those with CDM could induce maturational 
muscle arrest in mice [28]. Other genetic mechanisms that may 
account for maternal inheritance such as genomic imprinting [36] 
and mitochondrial DNA abnormalities [37] have not shown any 
differences from controls. The imbalance between MNBL and CUG-
BP1 mRNA binding proteins potentially shifting protein isoforms 
toward a more persistent fetal pattern is attractive as a theory for the 
muscle immaturity seen in CDM. Supporting this, a mouse model of 
CUG-BP1 over-expression showed high newborn mortality [38]. In the 
affected survivors no apparent improvement of muscle strength was 
seen, unlike children with CDM. Most likely combinations of DMPK 
alterations, mRNA binding protein changes and as yet unknown 
factors account for the unique features of CDM, as of yet there is no 
animal model of DM1 produces a typical ‘congenital’ DM phenotype. 

Epidemiology
Amongst series of hypotonic infants the rate of those with CDM 

ranges from 12-16% [39,40]. Although the incidence of CDM has been 
estimated at one in every 3500 to 16000 births [Wesstrom ref 41, ref 
42, 43], however these have not used population based methods. The 
author has recently completed a 5 year prospective active surveillance 
study in Canada, using the Canadian Pediatric Surveillance Program, 
a platform for rare disease surveillance. Using this methodology, 
with a clear definition of CDM that included the need for medical 
intervention in the neonatal period, 38 children were identified with 
CDM over the time period March 2005-Feb 2010. Using live birth data 
for the same time period an incidence of 2.1/100,000 (or 1/47,619) live 
births [Campbell personal communication].

Often it is not clear in studies the definition of CDM and so there 
remains uncertainty, without patient descriptions, if labels of CDM are 
being applied based on molecular testing, need for neonatal ventilation, 
feeding support, hypotonia or even maternal history alone. To ensure 
a uniform case definition for CDM, we propose that, an affected child 
may only be considered as having the congenital form of the disease 
if they (or their mother) have a genetically confirmed DM1 diagnosis 
and the child dies or requires hospitalization or medical intervention 
in the newborn period (first month of life) due to myotonic dystrophy 
symptoms. This provides a clear pragmatic definition of CDM and 
avoids having mildly affected children with a positive family history 

being classified with CDM where the family history precipitates genetic 
testing. All other children with DM1 should be labelled as childhood or 
pediatric DM1.

Clinical Genetics
The child with CDM is often the index case that then provokes the 

diagnosis of DM1 in the mother and serves as a focal point for genetic 
testing and diagnosis for entire families. The author has previously 
reported between 48-58% of the CDM children were the index case for 
their family [41] [Campbell personal communication- this is the CPSP 
study]. This seems a high number given that most mothers of children 
will themselves have expansions between 500-1500 repeats which is 
usually associated with a moderate clinical phenotype [42]. Rare cases 
of paternal transmission causing CDM have been reported [43,44].

Larger expansion sizes within a family are linked to earlier onset 
of disease. A study of 109 individuals from 17 families revealed that 
56% of affected individuals with an expansion size of greater than 4.5 
kb (> 1500 CTG repeats) by southern blot had congenital onset (and 
all subjects in this group had onset prior to 25 years of age) contrasted 
with the group of individuals with a less than 1.5kb expansion which 
had no cases of congenital onset and only one case childhood onset 
[45]. Within parent-child pairs in this study, children had a greater 
than two category increase in expansion size in 33 of 37 pairs and in 
all these cases the child had an earlier onset of disease. Interestingly, 
children with a similar expansion size as their parent also displayed an 
earlier age of onset of symptoms in 15 of 17 cases. It has been suggested 
that if a mother has one child with CDM then subsequent children with 
DM1 will also have CDM [46]. In another study of 124 maternal-child 
pairs a maternal expansion size of greater than 300 was associated with 
a 59% risk of CDM, versus only a 10% if the expansion was below this 
value [47]. However there is considerable variability as mothers with 
very small expansion sizes can have children with CDM [48] and case 
series of CDM children have demonstrated that between 10-18% of 
children can have relatively small expansion sizes (<1000 repeats) not 
normally considered a risk for congenital onset [41,42,48]. The lowest 
expansion size associated with CDM phenotype requiring ventilation 
support is 400 repeats [49]. Similarly, even at large expansion sizes the 
disease may not be severe, as those with >1500 repeats may have had no 
need for medical intervention early in life [41]. Rarely, the trinucleotide 
expansion can decrease in size across a kinship [48]. 

Prenatal testing is possible with chorionic villus sampling or 
amniocentesis. Paternal inheritance resulting in CDM is very unlikely, 
and in these cases the mean expansion in the trinucleotide number is 
relatively low at 56 repeats, with cases of contractions in CTG repeat 
size on record [50]. Conversely, with maternal transmission the mean 
CTG repeat increase is 948 [51]. Genetic counselling to help affected 
mothers understand the risks of disease transmission has been limited 
due to the variable correlation between the trinucleotide repeat length 
and clinical symptoms. In fact, it is clear that women are not interested 
in pre-natal testing exactly for this reason [52], and consensus 
statements have suggested caution in using genetic information as the 
sole indicator of risk of CDM [53]. 

Referral for genetic counselling services should be made for 
every family regardless of future child bearing plans as many women 
do not understand the risks of transmission [52]. Approximately 
half of the mothers in one series felt that being affected by DM1 did 
not have an influence on their child bearing decisions and all were 
knowledgeable about DM1 symptoms [52]. Other issues which may be 
related to pre-natal decision making include religious/culture values, 
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cognitive status of mothers, and inadequate understanding or lack of 
information. Asymptomatic minors of parents with DM1 are generally 
not tested due to inability to ensure fully informed decision making 
at a young age [53]. It is now clear that some otherwise asymptomatic 
children with DM1 can have cardiac arrhythmias causing death and 
so all unconfirmed asymptomatic siblings could be offered yearly 
electrocardiogram.

Clinical Characteristics
CDM may first manifest in utero as miscarriage, polyhydramnios, 

reduced fetal movement, premature delivery and still birth [54-58]. 
Neonates may need substantial resuscitative effort in the immediate 
postnatal period due to poor respiratory effort. Low Apgar scores may 
be a reflection of facial weakness, reduced tone and poor respiratory 
effort and not necessarily reflect a hypoxic-ischemic situation. Cord 
blood pH and initial blood gas should be used as a more reliable 
marker of physiologic compromise. Additionally, evidence of multi-
system organ dysfunction and the presence of persistent pulmonary 
hypertension, which has been described in infants with CDM [59], 
should be indicators of actual hypoxic-ischemic encephalopathy. 
Neuroimaging must be interpreted in light of the supporting clinical 
findings before attributing changes to HIE.

On examination, the newborn often demonstrates a characteristic 
facial weakness with a tented upper lip, mild ptosis and wasting of 
temporalis muscles giving the face a long thin appearance (Figure 
1). Diffuse hypotonia and hyporeflexia, at times associated with 
arthrogryposis, is evident on motor exam. Although not easily 
distinguished from hypotonia, weakness is also evident by a lack 
of spontaneous anti-gravity movement. The feet are often in a fixed 
or mobile club foot. Sensory system examination should be normal; 
however withdrawal responses and facial reaction to noxious stimuli 
will be difficult to judge due to motor impairment. Changes in heart 
rate or respiratory signs may be the only indicator of discomfort to 
noxious stimuli. Undescended testes are common in CDM, as in most 
congenital myopathic conditions [54]. Head size should be measured 
and followed due to a common occurrence of ventriculomegaly and 
even non-communicating hydrocephalus [60,61]. Although rarely 
done, due to the ease and specificity of genetic testing, the EMG 
performed in the newborn period is usually unremarkable. Rarely the 
EMG may demonstrate myotonic discharges [62] despite no evidence 
of clinical myotonia. One may also find myotonic discharges beyond 
the neonatal period before clinical myotonia is evident [62].

In the initial hospital period the greatest problems result from 
respiratory and feeding issues, but a list of all medical complications 
can be found in Table 2. Essentially all children will have substantial 
feeding and/or breathing difficulties requiring a period of assisted 
feeding and/or assisted ventilation requiring hospital admission for 
longer than that expected for their gestational age. Feeding may be 
started with nasogastric tube initially but slow GI motility, reflux or 
constipation may dictate the use of total parenteral nutrition. Motility 
agents such as metoclopromide can be helpful in improving gastric 
motility [63] with antacids improving reflux induced pain. Establishing 
oral feeding is challenging in those with substantial facial and 
oropharyngeal weakness or in those requiring prolonged ventilation. 
Long term nasogastric feeding or gastric-tube insertion is appropriate 
until facial strength improves.

Mechanical respiratory failure due to muscle weakness and/
or pulmonary hypoplasia is the main respiratory problem. Other 
respiratory factors include thin ribs and raised right hemi-diaphragm. 

Empirical management of respiratory function includes mechanical 
ventilation as well as medical therapies to stimulate respiratory 
function such as theophylline [64], caffeine [65] and aminophylline 
[61,65]. Surgical procedures such as plication of the diaphragm may 
help improve lung volumes. A gradual progression from full ventilatory 
support to nasal continuous positive airway pressure will facilitate 
independent ventilation.

Several published pediatric case series list CDM mortality rates in 
the range of 16 to 41% [41,55-57,61,66] although some of these studies 
include withdrawal of supportive care. The cause of death is generally 
respiratory insufficiency. By constructing a life table using 115 patients 
with a diagnosis of CDM, Reardon et al. [55] were able to show a 50% 
mortality by the mid-thirties. The most common causes of death were 
related to respiratory illness and cardiac arrhythmias. 

Until recently, it was not an uncommon belief that children with 
CDM ventilated for longer than thirty days all died and that prolonged 
treatment was futile [61,67]. In a retrospective review of 23 children, 
Campbell et al. [41] have demonstrated that this is not the case. In this 
report, all children (n=8) requiring ventilation over 30 days became 
independent of the ventilator. Three deaths did occur in this group at 
8 months, 10 months and 11 years. The overall mortality rate was 20% 
(4/20), regardless of ventilation status and excluding those who had life 
support withdrawn (n=3), with follow-up durations between 2 and 16 
years. The belief that all children ventilated greater than 30 days did 

Figure 1: Characteristic facial weakness with a tented upper lip, mild ptosis and 
wasting of temporalis muscles giving the face a long thin appearance.

A B C

Medical Problem Reference
ASD and PDA [97]
Cholelithiasis/cholestasis [99]
Chromosomal inversions [101]
Cystinuria [96]
Double outlet right ventricle [102]
Hernia [62]
Hydrops fetalis [93], [94] 
Hyperinsulinism [100]
Mobieus syndrome (unilateral facial weakness and abducens 
palsy) [102]

Persistent Pulmonary Hypertension [95], [59] 
Persistent tunica vasculosa lentis [98]
Progressive hypertrophic cardiomyopathy [89]
Seizures [66] 
Strabismus [41]
Ventriculomegaly and hydrocephalus [61]
Vesico-urethral reflux [64]

Table 2: Uncommon Medical Problems in the Neonatal Period.
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not survive complicates efforts to understand the natural history of 
CDM, as many children in the past could have had withdrawal of care 
at this 30 day time point. With recent reports of ventilator-free survival 
after prolonged ventilation [41,64,65,68] more families may opt for 
this approach. Currently long term ventilation has been described in a 
child with >2500 repeats, who at age nine years still requires overnight 
ventilation. He remains severely impaired from a motor perspective 
but cognitively is only mildly delayed [69]. These data contradict the 
position statement, of the 117th European Neuromuscular Conference 
Workshop Report [70], that the prognosis for weaning ventilation 
in CDM patients after four weeks of ventilation is poor. Appropriate 
counselling for parents about withdrawal of life support should include 
accurate information about the long term improvement in respiratory 
function and the option of long term ventilation. 

Respiratory infections and GI dysmotility or pseudo-obstruction 
are the principle long term complications in children with CDM, 
requiring an average of approximately one admission to hospital 
per year [41]. Orthopedic complications such as joint contracture, 
scoliosis [71] and fragility fracture should be monitored but little 
data is available on their prevalence in CDM. Cardiac conduction 
defects and arrhythmias need to be assessed through yearly ECG and/
or holter monitoring. Approximately 80% of children with CDM 
will have some ECG abnormality including abnormal Q-waves, 
ventricular hypertrophy, tachycardia, prolonged PR or QRS duration, 
and infranodal conduction defects [71]. Strabismus occurs in 
approximately one quarter of children and cataracts are typically a late 
and uncommon finding within the pediatric age range [56]. 

Although motor skills do improve over time, developmental 
motor and cognitive delay can be expected. Case series data show 
that children often will not walk before 18 months, but essentially all 
become independently mobile between age two and five years [56]. The 
rare child remains wheelchair dependant. Recently, CTG repeat size 
has been shown to correlate to motor function in a group of severe 
CDM patients [72]. Neck flexors and trunk flexors are usually the 
weakest muscles on bedside testing [71]. Functionally, jumping and 
heel walking are more difficult than stairs and running [72]. Oro-facial 
motor function is also impaired due to lip, tongue and facial weakness 
resulting in drooling, dysarthia and chewing/swallowing difficulties 
[73].

Mental Status
Some degree of cognitive impairment is found in CDM children, 

which appears to be due to a static encephalopathy. In six children with 
CDM tested with the Griffiths Mental Development Scales between 
17 and 48 months of age, the developmental quotients ranged from 
33 to 79 [74], and the deficits, were not accounted for even when 
excluding the locomotor subscale. Scores on intelligence testing is 
typically subnormal. One study of 18 children had percentile IQ scores 
ranging between 43 and 74 [56], a finding supported by other studies 
[54,71,75,76]. Not surprisingly, special educational supports will 
be needed by almost all children [77]. Of note, the severity of brain 
abnormality on imaging does not appear to correlate strongly with 
the level of intelligence [75,78]. Additionally, the length of the CTG 
expansion does not necessarily translate into the most severe cognitive 
changes [75]. 

Attention deficit-hyperactivity disorder and anxiety disorders have 
been noted more commonly in children with CDM [76], a finding also 
seen in those with childhood onset DM1 [79]. A case-control study of 8 
children with CDM and age, gender and school matched controls found 

that those with CDM demonstrated greater problems with motivation, 
insecurity, disobedience and were more withdrawn. They also caused 
more classroom disturbance and were twice as likely to have high 
emotional psychiatric scores than controls [80]. This study suggested 
that multifactorial issues, other than the direct biological impact of 
CDM, such as parental and sibling illness and poor recognition of facial 
emotions by teachers may be important to behavioral differences. 

Autistic spectrum disorders have been noted in over 50% of 
children with CDM and the longer the repeat size seem to correlate 
with Autistic features [ekstrom 2008]. This was based on interviews 
by a psychologist using a standardized instrument for Autism testing. 
Autistic spectrum disorders have not been noted to be so high in 
other series [49] and given the mental retardation, delayed language 
development, and myopathic facial expression one can envision that 
assessing for autistic features may be challenging.

Neuroimaging and Central Nervous System Pathology
Head US and CT scanning can reveal ventriculomegaly, which is 

most commonly non-progressive [78,81,82]. MRI has been valuable 
in identifying white matter changes, which are common in CDM. In 
one series of seven patients, white matter hyperintensities were noted 
in all children on T2 weighted MRI and ranged from single, isolated 
lesions to diffuse, confluent high signal [78]. Diffusion tensor imaging 
appears to confirm this finding of diffuse abnormalities in white matter 
microstructure [83]. Most changes were periventricular area and the 
white matter signal change was associated with mild or moderate loss 
of white matter and corresponding ventriculomegaly. Hashimoto et al. 
[84] also showed ventriculomegaly and/or periventricular white matter 
changes in all seven of their patients, but also observed brainstem 
atrophy, thin corpus callosum and cerebellar white matter high signal 
change in some children. Similar findings are reported in adults with 
less frequency [84]. MR spectroscopy shows lower N-acetyl aspartate/
choline and creatine ratios compared to normal controls [85].

Few pathologic samples have been reported in any detail. 
Periventricular leukomalacia and hydrocephalus were noted in a set of 
five patients [57]. Another series showed mature neurons abnormally 
placed in white matter and cortical heterotopia in the cerebellar vermis 
[82]. Leptomeningial glioneuronal heterotopias have been reported in 
two children [86]. 

Long Term Outcome
Later in childhood myotonia and slowly progressive distal muscle 

weakness become clinically evident as the disorder begins to take 
on the more characteristic adult form [54]. Although uncommon 
complications in the pediatric age group, yearly assessment for cataract 
formation and hyperglycemia is part of routine care.

Although gastrointestinal and orthopedic complications are 
clinically relevant problems later in life there is few such focused 
literature in CDM patients. In a single site, long term follow-up of those 
with CDM the constipation rate was 34% and the scoliosis rate was 
10% (n=71), but no clear definition of CDM is given and the severity of 
these problems is not detailed [55]. An examination of the orthopedic 
issues in 30 children with CDM shows that scoliosis (or kyphoscoliosis) 
is problematic in 30% with 10% requiring surgical correction [87]. 
Other less common problems included acquired heel cord contracture 
(23%), hip abductor contracture (7%), and lower extremity torsional 
malalignment signs (17%).
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Cardiac arrhythmia and hypertrophic cardiomyopathy have been 
described [88,89]. In a study of seven asymptomatic adolescences 
with CDM all had some ECG or echocardiographic abnormality with 
atrioventricular and intraventicular conduction defects in the majority 
[90]. Some echocardiography differences include mitral valve prolapse 
and fractional shortening reduction in later childhood [90,91]. In case 
series one can conclude that fatal arrhythmias are a common cause of 
mortality [41,55]. Fatigue and daytime somnolence are reported in 
combined series of CDM and childhood onset DM1with a frequency 
as high as 71% and 52% respectively [92]. Electroencephalograms are 
normal and epilepsy is rare [75].

Appropriately, more interest has been placed on family and child 
quality of life for the assessment of outcomes in all areas of medicine. 
In DM, multiple factors can compromise patient and family quality of 
life. The disease involves both cognitive and motor impairment, which 
requires highly demanding care and external resources in many cases. 
Affected mothers are often dealing with their own health care issues. A 
high incidence of family breakup was noted in our retrospective review 
[41] reinforcing the need to understand the impact of DM on the 
family. No quality of life studies or even simple descriptions of family 
functioning have been carried out in the CDM population.

Monitoring and Management
Yearly clinical evaluations should occur in a pediatric 

neuromuscular clinic to assure child health, maternal health and 
monitor non-affected children who could develop symptoms. Table 
3 outlines published guidelines for ventilatory monitoring [70] as 
well as a suggested investigation schedule from our clinic. Supportive 
management is the only currently available treatment. Anticipatory 
developmental support and facilitating resource allocation to optimize 
the educational environment is important. 

Conclusion
Congenital Myotonic Dystrophy, although uncommon, remains 

an important pediatric neuromuscular disease. There remain many 
unanswered molecular and clinical questions. Understanding the 
natural history is perhaps the most paramount currently, so that 
accurate information can be given to parents. As treatments become 
available and we need to have high quality natural history studies, 
clinical outcome measure evaluations and DM1 registries that include 
pediatric patients. 
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2. Overnight pulse 
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2. If ECG abnormal a 24-

hour holter monitor

Laboratory
1. Fasting glucose
2. Thyroid stimulating hormone 

(TSH)

1. Fasting glucose
2. Thyroid stimulating 
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Developmental Intelligence Quotient at age 5-7 
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Table 3: Recommended Schedule for Health Monitoring.
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