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Introduction
Infants born before 37 completed weeks of gestation are known as 

premature or preterm infants. Premature infants come early into the 
world. They are born fragile, small and weighing less than full term 
infants. Preterm birth refers to the birth of a baby that occurs before 
37 completed weeks of gestation. It can be further sub categorized as 
late preterm delivery from 34 to 36, moderately preterm from 32 to 34, 
very preterm less than 32, and extremely preterm less than 28 weeks of 
gestation WHO [1] and Offiah et al. [2]. Infants born with in preterm 
category share similar risk for death, weight, size and strength, are still 
at higher risk for health and developmental problems compared to 
those infants born full term [3]. Preterm birth can also be defined by 
birth weight: low birth weight less than 2500 g, very low birth weight 
1500 g, and extremely low birth weight less than 1000 [2]. Premature 
birth is the major cause of prenatal morbidity and mortality all over 
the world [4].

Globally, an estimated 13 million infants are born before 37 
completed weeks of gestation annually. Rates are generally highest 
in low and middle income countries and increasing in some middle 
and high income countries [5]. More than 1 in 10 of the world’s babies 
born in 2010 were born prematurely, making an estimated 15 million 
preterm births, of which more than 1 million died as a result of their 
prematurity [6,7]. Preterm are now the second leading cause of death 
in children less than 5 years and the single most important cause of 
death in the critical first month of life. Preterm birth accounts for 3.1% 
of all Disability Adjusted Life Years (DALYs) in the Global Burden of 
Disease, more than for HIV and malaria [1]. In Ethiopia, According 
to report of UNICEF [8], one of the main causes of neonatal death is 
preterm birth accounts for 23% of all other causes of neonatal death. 
Given the frequency of preterm birth worldwide, it is likely that most 
people will experience the tragedy of preterm birth at some point in 
their lives, either in family members or indirectly through friends.

Preterm birth has multiple factors; therefore solutions will not 
come through a single discovery but rather from an array of discoveries 

addressing multiple biological, clinical, and social behavioral risk 
factors. Therefore, Survival analysis consists in determining study 
subjects survival when exposed to the variables considered risk factors. 
It is currently known that the study of risk factors for infant mortality 
is very important, as, particularly in the newborn, it can be considered 
one of the best quality indicators for health care, as well as an indicator 
for population social and economic welfare [9].

Frailty models account for unobserved heterogeneity that occurs 
because some observations are more prone to failure and therefore frail 
than others in a data set. Therefore, the objective is to introduce an 
additional parameter to the hazard rate that accounts for the random 
frailties. These frailties can be specific to individuals or groups, and are 
referred to as individual frailty or shared frailty respectively.

The shared frailty model is relevant to event times of related 
individuals, similar organs and repeated measurements. Individuals in 
a cluster are assumed to share the same frailty, which is why this model 
is called shared frailty model. It was introduced by [10] and extensively 
studied in [11]. Therefore, in this study, there may be similar frailty 
with in subcategories of preterm birth, based on weeks of gestational 
age. Infants are born with in preterm category share similar risk for 
death, weight, size and strength [3].

This study presents an extension of Cox model to frailty model 
in which the Cox-proportional of baseline hazard and the gamma 
distribution is used as frailty distribution. The gamma distribution is 
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Abstract
In this research, the cox proportional hazard model and the semi-parametric gamma frailty model were compared 

on the survival of premature infants admitted to neonatal intensive care unit from December 29, 2011 to April 6, 2014. 
A retrospective study design was used to collect the data from patients chart. A frailty effect (θ=0.252, P-Value = 0.0031 
< α=0.05) was obtained from the semi-parametric gamma frailty model, and mortality was depend within and across 
categories of premature infants based on their gestational age. The values of frailty were dispersed and hence induce 
greater heterogeneity in the infant hazards. Therefore, when there is heterogeneity, semi-parametric gamma frailty 
model could be used and lead to acceptable conclusions. Both models identifies Antenatal Care Visit, gravidity of (6-10), 
HIV status of mother, Respiratory Distress Syndrome, Prenatal Asphyxia, anemia and breastfeed initiated as the most 
determinant and statistically associated with time to death of premature infants admitted to NICU. Based on the model 
comparison analysis, semi-parametric gamma frailty was the best model to fit the data.
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one of the most commonly used distributions for frailty. It has a closed 
form likelihood function that can be readily maximized. In addition, 
we study the performance of the Cox-proportional hazard model and 
compare with the semi parametric gamma frailty model by using AIC, 
BIC, I-likelihood, R2 and concordance probability.

Method of Data Analysis
Data

All medical records of preterm infants those who were admitted 
to NICU at University of Gondar Hospital from December 29, 2011 to 
April 6, 2014 were retrospectively reviewed by medical professionals.

 Survival data analysis

The term "survival analysis" pertains to a statistical approach 
designed to take into account the amount of time an experimental unit 
contributes to a study. That is, it is the study of time between entry into 
observation and a subsequent event. Originally, the event of interest 
was death hence the term, "survival analysis" is given. The analysis 
consisted of following the subject until death occurs considered as 
event of interest. Applications now include time until onset of disease, 
stock market crash, equipment failure, earthquake, and so on. The 
best way to define such events is simply to realize that these events 
are a transition from one discrete state to another at an instantaneous 
moment in time. Of course, the term "instantaneous", which may be 
years, months, days, minutes, or seconds, is relative and has only the 
boundaries set by the researcher.

The cumulative distribution function

The Cumulative Distribution Function (CDF) is very useful 
in describing the continuous probability distribution of a random 
variable, such as time, in a survival analysis. The CDF of a random 
variable T, denoted FT(t) = PT(T ≤ t). This is interpreted as a function 
that will give the probability that the variable T will be less than or 
equal to any value t that we choose. Several properties of a distribution 
function F(t) can be listed as a consequence of the knowledge of 
probabilities. Because F(t) has the probability 0 ≤ F(t) ≤ 1, then F(t) 
is a non-decreasing function of t, and as t approaches positive infinity, 
F(t) approaches 1. It is important to estimate the median survival time 
at F-1T(0.5). 

The survival function

Let the random variable T≥0 have a PDF F(t) and CDF F(t). Then 
the survival function takes on the following form:

( ) ( )( ) 1S t P T t F t= > = −  			                  (1)

That is, the survival function gives the probability of surviving or 
being event free beyond time t. Because S(t) is a probability, it is positive 
and ranges from 0 to 1. It is defined as S(0) = 1 and as t approaches 
positive infinity, S(t) approaches 0.

The hazard function

The Hazard Function h(t) is given by the following:

( ) ( ) ( )
( )

( )
( )

[ / )]  
1

f t f t
h t P t T t T t

F t S t
= < + ∆ = =

−
                             (2)

The hazard function describes the concept of the risk of an 
outcome (e.g., death, failure, hospitalization) in an interval after time t, 
conditional on the subject having survived to time t. It is the probability 
that an individual dies somewhere between t and t + Δ, divided by the 

probability that the individual survived beyond time t. The hazard 
function seems to be more intuitive to use in survival analysis than 
the PDF because it attempts to quantify the instantaneous risk that an 
event will take place at time t given that the subject survived to time 
t. The cumulative hazard function H(t) is the integral of the hazard 
function between integration limits of 0 and t.

Cox proportional hazard model

Cox proportional hazard model is usually written in terms of the 
hazard model formula. This model gives an expression for the hazard at 
time t for an individual with a given specification of a set of explanatory 
variables denoted by X and it is generally given by:

( ) ( ) ( ), , exp  i o ih t X h t Xβ β ′=                                                          (3) 

where ho(t) is the baseline hazard function which is obtained all X’s 
are set to zero, Xi is the vector of values of the explanatory variables 
for the ith individual at time t and β=(β1, β2, ..., βk)T is the vector of 
unknown regression parameters that are assumed to be the same for all 
individuals in the study, which measures the influence of the covariate 
on the survival experience. An attractive property of the Cox model is 
that, even though the baseline hazard part of the model is unspecified, 
it is still possible to estimate the β’s in the exponential part of the model. 
So, it can equally be regarded as linear model, as a linear combination 
of the covariates for the logarithm transformation of the hazard ratio 
given by:

( )
( ) ( ), , 

3.7i

o

h t X
log X

h t
β

β
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The cumulative hazard function is given by:

( ) ( ) '
oH t exp( ) H t Xβ=  			                 (4)

From model (3.6), we obtained the survivor function given by:

( ) ( ) ( )exp
, ,  

X
i oS t X S t

β
β

′
=                                                             (5)

Where: S0 (t) is a baseline survival function.

Semiparametric frailty models

In frailty models, the variability of survival times can be divided 
into two parts. One part is observed risk factors, known as covariates, 
and the other part is unobserved risk factors, known as frailty. The 
Univariate frailty model presents the population as a mixture in which 
baseline hazard is common to all individuals but each individual 
has his/her own frailty. Suppose we have a sample of j observations 
in a study. Some of these observations fail earlier than others due to 
unobserved heterogeneity. The proportional hazards model assumes 
that conditional on the frailty, the hazard function for an individual 
at time t > 0 is

( ) ( ) ( ), , exp , 1, 2, , j j o j jh t X h t X W j nβ β φ+′= = …  	              (6)

Where, Wj is a frailty term from a probability distribution with a 
mean of 0 and variance of 1. If Wj could be measured and included 
in the model, then ϕ would go to 0 and we would obtain the standard 
proportional hazards model. The hazard function conditional on both 
covariates and frailty can be rewritten as:

( ) ( ) ( ), , exp , 1, 2, , j j o j jh t X h t U X j nβ β =′= …  	              (7)

Where, exp( )j jU W φ=  .This shows that the hazard of an individual 
also depends on an unobservable random variable, Uj, which acts 
multiplicatively on the hazard rate. If frailty is not taken into account, 
then Uj= 1.
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In the Univariate case, frailty models are used to make adjustments 
for over dispersion. When unobserved or unmeasured effects are 
ignored, the estimates of survival may be misleading. Therefore, 
correction for this over dispersion is needed in order to allow for 
adjustments for those important frailties [12].

Shared frailty model is similar to the individual frailty model 
except the only difference is that frailty is now shared among the ni 
observations in the ith group. Suppose we have j observations and i 
subgroups. Each subgroup consists of ni observations and 0

G

i
ni n

=
=∑ , 

where n is the total sample size. The hazard rate for the jth individual in 
the ith subgroup is given by:

( ) ( ) ( ), , exp , 1, , ,  1, 2, , ij ij o ij j ih t X h t X W i G j nβ β φ= + = … = …′  (8) 

Where, Wi are frailty terms for subgroups and their distribution is 
again assumed to be independent with a mean of 0 and a variance of 
1. The hazard function conditional on covariates and frailties can be 
rewritten as:

( ) ( ) ( ), , exp , 1, , ,  1, 2, ,  ij ij o j ij ih t X h t U X i G j nβ β= = … = …′  (9)

Where, exp( )j jU W φ=

As in the proportional hazards model, parametric or non-
parametric forms of baseline hazard can be assumed in frailty models. 
If non-parametric form is assumed for ho(t), then semi parametric 
proportional hazards model is considered and the estimates are 
usually obtained by using Expectation-Maximization (EM) algorithm. 
If parametric form for ho(t) is assumed, then maximum likelihood 
estimates can be obtained by maximizing the likelihood function. 
In this study, we are only considering the semi parametric forms of 
baseline hazard. Most applications assume Cox Proportional baseline 
hazard. 

The basic idea of a frailty model is to incorporate an unmeasured 
"random" effect in the hazard function to account for heterogeneity in 
the subjects. When the observed data consist of triples (ti, xi, ci), i = 1, 
2,..., n denoting the observed follow up times, the vector of p covariates, 
and a right censoring indicator variable, the hazard function at time t 
for the ith subject is, under the proportional hazards model,

 ( ) ( ) ( ), , exp  i o ih t X h t Xβ β ′=  			              (10)

This idea extends to models with time varying covariates, with the 
usual change in notation.

A frailty model includes, in the hazard function, the value of an 
additional unmeasured covariate, the frailty, denoted Uj, yielding a 
hazard function:

( ) ( ), , , ,  f i j ih t X U h t Xβ β=  			              (11)

We use the subscript f in equation (10) to represent a hazard 
function that has been modified by the inclusion of a frailty. An 
important statistical assumption is that the frailty is independent of 
any censoring that may take place. If the value of the frailty in (10) is 
greater than one, the subject has a larger than average hazard and is 
said to be more “frail”. On the other hand, if the value of the frailty 
is less than one, the subject is less "frail" than an average subject. In 
particular, due to the fact the "most" frail individuals tend to fail 
early in the follow-up, the average hazard ratio tends to decrease 
over time [11,13]. Since the major thrust of this study is modeling 
with the proportional hazards model, we do not consider parametric 
models with frailties in any more detail. In the remainder of this 
section, we focus on adding a frailty to the semi parametric hazard 
model that is described in (10). In this study, we focus on the semi 

parametric gamma frailty distribution model.

Gamma distribution

Suppose a random variable T > 0 is gamma distributed with scale 
parameter λ > 0 and shape parameter α > 0, i.e. T~ Gamma (λ, α). The 
probability density function (PDF) of a random variable T is: 

( ) ( )
1

,  0
t

T
t ef t t
Ã

α α λλ
α

− −

= > 				               (12)

Where, 1

0

( ) k sk s e ds
∞

− −Γ = ∫  is the Gamma distribution? The expected 
value and variance of the gamma distribution are as follows:

( )  E T α
λ

=  					                (13)

( ) 2Var T α
λ

=  					                (14)

The survival and hazard functions of the gamma distribution are 
given by:

( ) ( )
( )
,

 
Ã t

S t
Ã
α λ
α

=  					               (15)

( ) ( )
1 ,  0

, 
th t t e t

Ã t
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α λ
− −= > 				               (16)

Where, ( , )tα λΓ  is the upper incomplete gamma function.

The hazard function is decreasing, constant and increasing when 0 
< α < 1, α = 1 and α >1 respectively.

The gamma distribution is very well known and has simple 
densities. It is the most common distribution used for describing frailty. 
Even though gamma models do not have closed form expressions for 
survival and hazard functions, from a computational view, it fits well 
to frailty data and it is easy to derive the closed form expressions for 
unconditional survival and hazard functions. For this reason, this 
distribution is used often in most applications. Frailties appearing in 
the conditional likelihood can be integrated out and hence give simple 
expressions for marginal likelihood. Thus, it is easy to obtain parameter 
estimates by maximizing the marginal likelihood.

There are many applications of the gamma frailty model. Lancaster 
[14] suggested this model for the duration of unemployment. Andersen 
et al. used the gamma frailty model to check the proportional hazards 
assumptions in his study of malignant melanoma. Vaupel et al., [15] 
used the gamma distribution in their studies on population mortality 
data from Sweden. The gamma distribution has two advantages as a 
frailty distribution. First, the frailty distribution of the survivors at 
any given age is again a gamma distribution, with the same parameter 
and a different scale parameter. The second advantage is that the 
frailty distribution among the persons dying at any age is also a 
gamma distribution, with the same shape parameter plus one, and a 
scale parameter as a function of the age at death. However, there are 
no known biological reasons which make the gamma distribution 
preferable than other distributions.

In gamma frailty models, the restriction α = λ is used, which results 
in expectation of 1.The variance of the frailty variable is then 1/ λ. Assume 
that the frailty term U is distributed as gamma with E(U) = 1 and Var(U) 
=θ. Then λ = α =1/ θ. The distribution function of the frailty term U is then 
one parameter gamma distribution, Ui ~ Gamma (1/θ, 1/θ): 

( ) ( )
( )

1/ 1

1/

exp /
,  0

1/
u u

g u
Ã

θ

θ

θ
θ

θ θ

− −
= >  			              (17)

U > 1 indicates that individuals in group i are frail, whereas U < 1 
indicates that individuals are strong and have lower risk.
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identified at birth in premature infants were Hypothermia 274 (56.5), 
RDS 54(31.8), Breast Feeding 194(19.4) and Neonatal Sepsis 310(63.9) 
and with median (95 % CI) survival time of 15(6.724, 23.276), 5(2.680, 
7.320), 3(2.454, 3.546) and 28(.,.) days, respectively. The other common 
causes of admissions for premature infants were jaundice 61(12.6%), 
prematurity of apnea 53(10.9%), SGA 30(6.2), hypoglycemia 68(14%), 
PNA 63(13%) and congenital malformation 5(1%).

Appendix (B) shows preterm infants average length of days stay 
in hospital and percentage of death for each maternal clinical factor. 
40(8.2%) premature infants were born from HIV positive mothers 
with mean (95%CI) and median length of hospital stay is 14.59(10.763, 
18.427) and 10 days, respectively. Eight (1.6%) were IDM with mean 
(95%CI) and median (95%CI) length of hospital stay were 11.0(4.236, 
17.764) and 3.00 (0.000, 14.642) days, respectively.

Using premature dataset, we obtain estimated Kaplan Meier 
survivor curve that is a decreasing step functions of survival function 
versus survival time, as illustrated Figure 1, rather than smooth curves. 
It gives the probability that the premature infants survival exceeds at the 
specified days. The probability of premature infants survives more than 
28 days is 0.5, as illustrated horizontal dot reference line in the figure. 
This layout showed that the probability of survival of premature infants 
is high in the first day, which relatively decreases as follow up time 
increases. During the first day of hospital stay, the maximum (93.4%) 
probability of survival was observed with a standard error of 0.0113, 
at the 10thdays of hospital stay the probability of survival of premature 
infants was 73.25% with a standard error of 0.0231, from 19 to 25 days 
of hospital stay the probability of survival of premature infants was 
65.33% with a standard error of 0.0343 and at the 28thdays of hospital 
stay the probability of survival of premature infant was30.62% with a 
standard error of 0.2180 for the follow up period of time.

Comparison of survivor function between two or more 
groups of premature infants

Plots of the Kaplan Meier curves for each category of the covariates 
Neonatal Sex, Mode of Delivery, Birth weight of infants, respiratory 
distress and Parity are shown in Figures 2- 6 respectively. Notice that 
the Kaplan Meier curve for infants those who had Respiratory Distress, 
weight less than 1600 gram and more than one parity of their mother 
were consistently lower than the KM curve for infants those who had 
no RDS, weight of greater than or equal to 1600 and zero parity of 
their mother, respectively. Figures 4- 6 indicates that infants those who 
had no RDS, weight greater than or equal to 1600 and zero parity of 
their mother has better survival prognosis than to those corresponding 
categories. Moreover, as the length of hospital stay in days increases, 
the two curves appear to get farther apart, suggesting that the beneficial 
effects of infants those who have better survival prognosis over those 
haven’t are greater the longer one stays in hospital. However, Figure 2 
and 3 indicates Kaplan Meier curves for each category of the variable 
neonatal sex and mode of delivery are crossed each other, that means 
there is no survival difference. Most of the KM curves show there is a 
difference between different categories except the graph of covariate 
congenital malformation and TTN.

Table 3 describe how to evaluate whether or not overall Kaplan 
Meier curves for two or more categories of covariates are statistically 

Model comparison methods

Model comparison and selection are among the most common 
problems of statistical practice, with numerous procedures for 
choosing among a set of models proposed in the literature [16-21], 
for recent reviews. Most selection methods are defined in terms of an 
appropriate information criterion, a mechanism that uses data to give 
each candidate model a certain score; this then leads to a fully ranked 
list of candidate models, from the best to the worst. Here, we use these 
criterions to determine the best model between frailty model and Cox 
proportional hazard model. In order to compare proposed models 
we use Bayesian Information Criterion (BIC), Akaike Information 
Criterion (AIC) and Deviance Information Criterion (DIC).

AIC providing a balance between models fit (via the log-likelihood) 
and model effective degree of freedom [22,23] advocated that, given 
a class of competing models for a data set, one choose the model that 
minimizes:

( )ˆ 2AIC D Pθ= +  				                 (18)

Where, p represents the number of parameters of the model. ( )ˆD θ
Represents an estimate of the deviance evaluated at the posterior mean, 

( /ˆ )E dataθ θ= . The deviance is defined by, ( ) 2 log ( )D Lθ θ= −  where 
θ is a vector of unknown parameters of the model and ( )L θ  is the 
likelihood function of the model.

The AIC penalizes the number of parameters less strongly than 
the Bayesian information criterion (BIC), which was independently 
developed by [24-26] also have shown that the AIC tends to overestimate 
the number of parameters needed, even asymptotically. The Schwarz 
criterion indicates that the model with the highest posterior probability 
is the one that minimizes:

( ) ( )ˆ .logBIC D P nθ= +  				               (19)

The major benefit of the BIC approximation is that it includes the 
BIC penalty for the number of parameters being estimated. The model 
with the smallest BIC value is chosen as the best model.

Results and Discussions
During the study period, 485 premature infants were admitted 

to the NICU of UOGH. Of these infants included in the analysis, 363 
(74.8%) infants were discharged (Improved, No change and Referred) 
at the end of the follow up and 122(25.2%) infants were died. In this 
study, the overall mean (95% CI) and median length of hospital stay 
was 20.383(19.170, 21.59) and 28 days, respectively (Table 1).

Table 2 shows demographic and obstetrics factors by the premature 
infants’ death status, mean and median (95% CI) at the end of follow 
up. Among premature infants included in the analysis, 268 (55.3%) 
were males and 217(44.7%) were females with mean (95% CI) length 
of hospital stay 19.88(18.230, 21.536) and 20.95 (19.165, 22.739) days 
respectively. The results of this table indicated that majority of 410 
infants (84.5%) of their mother had ANC follow up. The highest mean 
(95% CI) length of hospital stay was 25.09(23.572, 26.608) days for 
infants of gestational age (32, 34]; 24.29(22.727, 25.867) days for infants 
of Gestational age (34, 37) and the smallest mean (95%CI) and median 
(95%CI) length of hospital stay was 3.686(2.744, 4.628) and 2.00(1.226, 
2.774) days for infants of Gestational Age ≤ 28 respectively. Of the 122 
who died, the highest number 92(19.0%) and 88(18.1%) premature 
infants were died from mother’s parity of [1-5] and gravidity of [2-
5], respectively. Out of 485 premature infants 291(60%) and 194(40%) 
were delivered by SVD and CS, respectively. Other description of 
premature data is shown at Appendix (A). The most common problems 

No. of  preterm 
infants Death (%) Median 

[95% CI] Mean[95% CI]

Total 485 122(25.2) 28 [28,  .] 20.383[19.170, 21.59]

Table 1: Average survival time of premature infants.



Citation: Yehuala S, Ayalew S, Teka Z (2015) Survival Analysis of Premature Infants Admitted to Neonatal Intensive Care Unit (NICU) in Northwest 
Ethiopia using Semi-Parametric Frailty Model. J Biomet Biostat 6: 223. doi:10.4172/2155-6180.1000223

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 5 of 12

Volume 6 • Issue 1 • 1000223

  Died Mean Median
Covariates Categories Total (%) Count(%) Estimate[95 % CI] Estimate[95 % CI]

Neonatal Sex 
Male 268(55.3) 73(15.1) 19.88   [18.230, 21.536] 28.0   [. , .]
Female 217(44.7) 49(10.1) 20.95   [19.165, 22.739]         . [. , .]

Mode of delivery
SVD 291(60.0) 79(16.3) 19.82   [18.240, 21.395] 28.0   [. , .]
CS 194(40.0) 43(8.9) 21.26   [19.429, 23.096]         . [. , .]

Antenatal Care Visit(ANC)
No 75(15.5) 34(7.0) 14.77   [11.751, 17.784] 12.0   [7.201, 16.799]
Yes 410(84.5) 88(18.1) 21.41   [20.123, 22.694] 28.0   [25.195, 30.81]

Gravidity
1 123(25.4) 17(3.5) 23.71   [21.601, 25.822] 28.0   [7.114, 48.886]
5-Feb 310(63.9) 88(18.1) 18.69   [17.185, 20.187] 26.0   [. , .]
10-Jun 52(10.7) 17(3.5) 18.00   [14.878, 21.122]         . [. , .]

Parity
0 124(25.6) 17(3.5) 23.78   [21.708, 25.851] 28.0   [7.119, 48.881]
5-Jan 325(67.0) 92(19.0) 18.78   [17.333, 20.227]         . [. , .]
10-Jun 36(7.4) 13(2.7) 15.98   [12.489, 19.471]         . [. , .]

Weight of Infants
< 1600 123(25.4) 62(12.8) 15.73   [13.519, 17.935] 14.0   [1.163, 26.837]
[1600, 2500] 362(74.6) 60(12.4) 20.97   [19.692, 22.249]         . [. , .]

Gestational Age

≤ 28 51(10.5) 51(10.5) 3.686   [2.744, 4.628] 2.00   [1.226, 2.774]
(28, 30] 26(5.4) 7(1.4) 19.60   [15.558, 23.637]          .[. , .]
(30, 32] 88(18.1) 42(8.7) 15.77   [13.155, 18.377] 13.0   [4.759, 21.241]
(32, 34] 142(29.3) 15(3.1) 25.09   [23.572, 26.608] 28.0   [. , .]
(34, 37) 178(36.7) 7(1.4) 24.29   [22.727, 25.867]         . [. , .]

Multiple Pregnancy
No 294(60.6) 58(12.0) 21.63   [20.070, 23.188] 28.0   [15.466, 40.53]
Yes 191(39.4) 64(13.2) 18.03   [16.220, 19.838]         . [. , .]

Table 2: Average and 95% CI for average length of day stay in hospital, Frequencies and Percentages death for Demographic and Obstetrics Factors.

Figure 1: Kaplan Meier Estimate of Survival Function of Premature Infants.

Figure 2: Comparison of KM curve of Neonatal Sex.

Figure 3: Comparison of KM curve of Mode of delivery.

Figure 4: Comparison of KM curve of Weight of infants.
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equivalent using the log-rank test. Therefore based on this statistical 
test procedure ANC, Gravidity, Parity, Weight of Infants, Gestational 
Age, Multiple Pregnancy, HIV status of Mother, IDM, Gestational Age 
Vs Weight of infant, Breast Feeding Initiated, Hypothermia, Neonatal 
Sepsis, RDS, PNA, Anemia, Hypoglycemia, and Jaundice are statistically 
significant (P-Value<0.05). This means that, we have enough evidence 
to say that the premature infants admitted to NICU survival curves 
are different or the Kaplan Meier curves are statistically different with 
respect to categories of significant covariates. Neonatal Sex, TTN, 
Congenital Malformation and Mode of delivery are not statistically 
significant (P-Value>0.05), that means, we have no enough evidence 
to say that the premature infants admitted to NICU survival curves are 
different or the Kaplan Meier curves are statistically equivalent with 
respect to categories of these covariates.

Fitted cox proportional hazard model of premature infants

The Cox proportional hazard model in Table 4 shows that ANC, 
Gravidity (6-10), HIV status, RDS, PNA, Anemia and Breast Feed 
Initiated were statistically significant (P-Value < 0.05) determinants 
of premature infants mortality. However, other variables Mode of 
delivery, Gravidity (2-5), weight of infant, multiple pregnancies, AGA 
and LGA were not statistically significant.

The hazard ratio (95% CI) for premature infants admitted to NICU 
who were born from those mothers had ANC, Gravidity of (6-10) and 

HIV Positive, compared to those infants born from mothers hadn’t 
ANC, gravidity of zero and HIV negative was 0.5247[0.33828, 0.8139], 
2.0717[1.00074, 4.2889] and 1.8033[1.03724, 3.1351], respectively. 
These means that, premature infants born from those mothers who had 
ANC follow up were 47.6% less likely to die than to those who hadn’t 
ANC follow up. The risk of death of premature infants born from those 
mothers who had gravidity of (6-10) were 2.0717 times higher than to 
those infants born from mothers’ gravidity of zero. Premature infants 
born from those mothers with HIV were 80.33% more likely to die than 
those infants born from mothers HIV negative.

The hazard ratio (95% CI) for premature infants admitted to NICU 
who had RDS, PNA and anemia compared to those infants who hadn’t 
RDS, PNA and anemia were 7.7742[4.71215, 12.826], 2.1248[1.41979, 
3.1798] and 4.6699[1.7687, 12.3297], respectively. That is, the risk of 
death of premature infants those who had RDS, PNA and anemia 
were 7.7742, 2.1248 and 4.6699 times higher than to those infants 
without RDS, PNA and anemia respectively. The hazard ratio(95% 
CI) for premature infants admitted to NICU those who were Breast 
feed initiated less than one, [1,2] and greater than 2 hours compared 
to those who weren’t breast feed initiated 0.1021[0.04480, 0.2326], 
0.1288[0.06760, 0.2455] and 0.3752[0.22508, 0.6254], respectively. 
Premature infants breast feed initiated less than one, [1,2] and greater 
than 2 hours were 89.8%, 87.12% and 62.48% less likely to die than to 
those infants who weren’t initiated at all, respectively.

Fitted Semiparametric Gamma Frailty Model of Premature 
Infants

It is argued that there is gestational age clustering in mortality 
among premature infants. We explored the effects of covariates on 
premature infants by accounting for categories of gestational age using 
semi parametric gamma frailty model. 

The semi parametric gamma frailty model (Table 5) shows that 
ANC, Gravidity (6-10), HIV status, RDS, PNA, Anemia and Breast Feed 
Initiated were statistically significant (P-Value<0.05) determinants of 
premature infants’ mortality within the same categories of premature 
infants by gestational age frailty effect. Mode of delivery, gravidity (2-
5), weight of infant, multiple pregnancies, AGA and LGA were not 
statistically significant.

The hazard ratio (95% CI) for premature infants admitted to NICU 
who were born from those mothers had ANC, gravidity of (6-10) and 
HIV positive, compared to those infants born from mothers hadn’t 
ANC, gravidity of zero and HIV negative was 0.544 (0.3475, 0.853), 
2.215 (1.0597, 4.629) and 1.776(1.0170, 3.103), respectively. These 
means that, premature infants who were born from those mothers had 
ANC follow up were 45.6% less likely to die than to those who hadn’t 
ANC follow up. The risk of death of premature infants that were born 
from those mothers had gravidity of (6-10) were 2.215 times higher 
than to those infants born from gravidity of zero mothers’. Premature 
infants that were born from mothers with HIV positive were 77.6% 
more likely to die than those infants born from mothers HIV negative.

The hazard ratio (95% CI) for premature infants admitted to 
NICU who had RDS, PNA and anemia compared to those infants who 
hadn’t RDS, PNA and anemia were 5.572(3.2655, 9.509), 1.916(1.2741, 
2.882) and 7.053(2.5758, 19.31), respectively. That is, the risk of death 
of premature infants those who had RDS and anemia were 5.572 and 
7.053 times higher than to those infants without RDS and anemia, 
respectively. Premature infants who had PNA were 91.6% more likely 
to die than those infants without PNA.

Figure 5: Comparison of KM curve of RDS.

Figure 6: Comparison of KM curve of Parity.
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    Log-rank Test
Factors Covariates DF χ2 P-Value

  Neonatal Sex 1 1.929 0.165
  Mode of delivery 1 2.799 0.094
  Antenatal Care Visit(ANC) 1 17.004 0.000**

Demographic and Obstetrics’ 
Factors Gravidity 2 11.607 0.003**

  Parity 2 12.8 0.002**

  Weight of Infants 1 34.031 0.000**

  Gestational Age 4 307.6 0.000**

  Multiple Pregnancy 1 12.097 0.001**

  HIV status of Mother 1 10.073 0.002**

Maternal Clinical Factors Infant of Diabetic Mother (IDM) 1 9.124 0.003**

  Gestational Age Vs Weight of 
infant 2 13.329 0.001**

  Breast Feeding Initiated 4 266.178 0.000**

  Hypothermia 1 75.042 0.000**

  Neonatal Sepsis 1 42.681 0.000**

  Respiratory Distress Syndrome 
(RDS) 1 178.284 0.000**

  Jaundice 1 6.653 0.010**

Problems Identified at Birth 
(Diagnosis of Infant) Prinatal Asphyxia (PNA) 1 64.481 0.000**

  Anemia 1 8.066 0.005**

  Congenital Malformation 1 1.446 0.229

  Transient Tachypnea of 
Newborn (TTN) 1 3.018 0.082

  Hypoglycemia 1 97.721 0.000**

  Prematurity of Apnea 1 130.935 0.000**

** Significant (P-value < 0.05)
Table 3: Log-Rank test of equality of survival distributions of different factors of death of premature infants.

Covariates β SE(β) Z       HR[95%CI] P=Pr(>|z|)    
Mode of Delivery       (SVD)          
                                     CS -0.2856 0.2172 -1.315 0.7516[0.49101, 1.1504] 0.188535
ANC                            (No)          
                                     Yes         -0.6449 0.224 -2.879 0.5247[0.33828, 0.8139] 0.003987**

Gravidity                     (1)          
                                     2 - 5    0.5514 0.2883 1.913 1.7358[0.98654, 3.0539] 0.055752

                                     6 - 10       0.7284 0.3713 1.962 2.0717[1.00074, 4.2889] 0.049766**

HIV status (Negative)          
                                      Positive      0.5896 0.2822 2.09 1.8033[1.03724, 3.1351] 0.036658**

Weight of Infant      (<1600)          
                                [1600, 2500]    0.1031 0.2109 0.489 1.1086[0.73320, 1.6763] 0.624978

Multiple Pregnancy    (No)          
                                     Yes      0.1289 0.2004 0.643 1.1376[0.76807, 1.6849] 0.520065
RDS                             (No)          
                                      Yes            2.0508 0.2554 8.028 7.7742[4.71215, 12.826] 9.99e-16**

PNA                             (No)          
                                      Yes            0.7537 0.2057 3.664 2.1248[1.41979, 3.1798] 0.000248**

Anemia                        (No)          
                                      Yes         1.5411 0.4954 3.111 4.6699[1.7687, 12.3297] 0.001863**

GAvsWeight(SGA)          
                                      AGA -0.2702 0.3209 -0.842 0.7632[0.40689, 1.4316] 0.399816
                                      LGA    -0.8544 1.067 -0.801 0.4255[0.05256, 3.4450] 0.423275

Breast Feed Initiated  (Not at all)          
<1 Hr -2.2821 0.4201 -5.432 0.1021[0.04480, 0.2326] 5.58e-08**

                                      [1, 2] Hr -2.0493 0.329 -6.228 0.1288[0.06760, 0.2455] 4.72e-10**

>2 Hr -0.9803 0.2607 -3.76 0.3752[0.22508, 0.6254] 0.000170**

                                   Other Milk -1.285 1.0364 -1.24 0.2767[0.03628, 2.1094] 0.215046

** Significant (P-value < 0.05) and categories in the bracket are reference categories.
Table 4: Final fitted Cox’s Proportional Hazard Model of Premature infants’ by stratification of hypothermia.
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Covariates Categories β SE(β) χ2 HR [95% CI] p-value

Mode of Delivery
(SVD)          

CS -0.283 0.218 1.69 0.753[0.4916, 1.154] 1.90E-01

ANC
(No)          
Yes         -0.608 0.229 7.05 0.544[0.3475, 0.853] 7.9e-03**

Gravidity
-1          

5-Feb 0.543 0.286 3.61 1.720[0.9831, 3.011] 5.70E-02
10-Jun 0.795 0.376 4.47 2.215[1.0597, 4.629] 3.4e-02**

HIV status
(Negative)          

Positive      0.575 0.285 4.08 1.776[1.0170, 3.103] 4.3e-02**

Weight of Infant       
(<1600)          

[1600, 2500]    0.39 0.223 3.06 1.477[0.9543, 2.285] 8.00E-02

Multiple Pregnancy
(No)          
Yes      0.117 0.202 0.34 1.124[0.7562, 1.672] 5.60E-01

RDS
(No)          
Yes            1.718 0.273 39.69 5.572[3.2655, 9.509] 3.0e-10**

PNA
(No)          
Yes            0.65 0.208 9.75 1.916[1.2741, 2.882] 1.8e-03**

Anemia
(No)          
Yes         1.954 0.514 14.45 7.053[2.5758, 19.31] 1.4e-04**

GAvsWeight
(SGA)          
AGA -0.266 0.321 0.68 0.767[0.4084, 1.439] 4.10E-01
LGA    -0.766 1.072 0.51 0.465[0.0568, 3.801] 4.70E-01

Breast Feed Initiated

(Not at all)          
<1 Hr -2.214 0.444 24.91 0.109[0.0458, 0.261] 6.0e-07**

[1, 2] Hr -1.824 0.345 27.91 0.161[0.0820, 0.317] 1.3e-07**

>2 Hr -0.948 0.269 12.39 0.388[0.2287, 0.657] 4.3e-04**

Other Milk -1.766 1.07 2.72 0.171[0.0210, 1.393] 9.90E-02
Frailty(Gestational Age, distribution= "Gamma“) 13.91 3.1e-03**

Variance of Random Effect = Var(U) = θ 0.252

** Significant (P-value < 0.05) and categories in the bracket are reference categories.
Table 5: Final fitted Semiparametric Gamma frailty Model of Premature infants’ by stratification of hypothermia.

Finally, the hazard ratio (95% CI) for premature infants admitted 
to NICU had Breast feed initiated less than one, [1,2] and greater 
than 2 hours compared to those who hadn’t breast feed initiated was 
0.109(0.0458, 0.261), 0.161(0.0820, 0.317) and 0.388(0.2287, 0.657), 
respectively. Premature infants had breast feed initiated less than one, 
[1,2] and greater than 2 hours were 89.1%, 83.9% and 61.2% less likely 
to die than to those infants who hadn’t initiated at all, respectively.

Table 5 shows that the variance of frailty is significantly greater than 
zero (θ=0.252, P-Value=0.0031<α=0.05). It shows that each category of 
preterm infants by gestational age has different values of random effects 
and there is heterogeneity of risks between gestational age categories. 

In empirical applications, the observed survival data are used 
to estimate the parameters of the distribution of frailty f(u) i.e. in 
this study gamma distribution and to actually predict the individual 
frailties(Uj) . Premature infants in the same categories of preterm based 
on gestational age usually share the same unobserved frailty.

From Table 6 Uj is the common frailty which is shared by all 
premature infants’ in group j and we call it as shared frailty. Uj is a 
measure of relative risk because the greater an individual’s frail(Hanagal, 
2011); with regard to premature infants’ death, the greater the infants’ 
susceptibility to the premature infants’ death.

Table 6 shows the common frailty Uj(95% CI) of each premature 
infant in categories of preterm based on gestational age (≤ 28), (28, 
30] and (30, 32] is 1.575(0.9207, 2.695), 1.254(0.6325, 2.487) and 

1.135(0.6568, 1.960), respectively. Premature infants in these groups are 
more frail infants (Uj>1), i.e. they have a greater hazard and more likely 
to die earlier. However, the common frailty Uj(95% CI) for categories 
(32, 34] and (34, 37) is 0.527[0.2646, 1.049] and 0.509[0.2357, 1.099], 
respectively and infants in these groups are less frail infants (Uj<1), 
they have a smaller hazard and are less likely to die earlier. 

Generally, the greater the common frailty effect (Uj) the more 
likely to get the event (death)((Hanagal, 2011)). Therefore, infants in 
gestational age group (≤ 28) are more likely to die than other groups 
whereas; premature infants in gestational age group (34, 37) are less 
likely to die than other group.

Checking the adequacy of fitted premature infants models

The final Cox proportional hazard and semi parametric gamma 
frailty models were fitted after both the outliers, overall goodness of 
test and proportional hazard assumptions are fulfilled. The other 
aspects of the final models examined were the influence or leverage 
each subject has on the model fit. The following sections show the test 
results for overall fit and proportional hazard assumptions of final 
fitted premature infants’ models. 

Testing the overall fit of premature infants models

The overall fit for Cox proportional hazard and semi parametric 
gamma frailty models was tested by likelihood ratio and Wald test, as 
shown in Table 7. Results from these test procedures; we have enough 
evidence to say that both models are best fit (P-Value<0.05) at 5% level 
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of significance. A perfectly adequate model may have low R2 due to 
high percent of censored data, but the concordance probability which is 
used to evaluate the discriminatory power and the predictive accuracy 
of the two models is large.

Testing the Validity of Proportional Hazard Assumption

Testing the proportional assumption is vital for interpretation and 
use of fitted proportional hazard and semi parametric proportional 
hazard models. Therefore, in this study the Schoenfeld residuals 
proportional hazard assumption test for the individual covariates used., 
while the global test uses the scaled Schoenfeld residuals by R-software 
cox.zph code. If significant (P-Value < 0.05), then the proportional 
hazard assumption is rejected. From Table 8, we observe that each 
covariates (P-Value > 0.05) and all of covariates simultaneously 
(GLOBAL for Cox proportional hazard P-Value=0.9334 > 0.05 
and semi parametric proportional hazard P-Value=0.8861) met the 
proportional hazard assumption.

Comparison of premature infants models

The AIC, BIC, and Log-likelihood (full) are used for comparing the 
Cox proportional hazard and semi parametric gamma frailty models. 
The semi parametric gamma frailty model was considered the best 
model as it had the smallest AIC, BIC and I-likelihood (full) compared 
to the Cox proportional hazard model (Table 9). 

In addition to these, R2 and concordance are used for model 
comparison. A perfectly adequate model may have low R2 due to 
high percent of censored data for both models [27,28], but R2for 
semi parametric gamma frailty is greater than Cox proportional 
hazard model. The concordance probability is used to evaluate the 
discriminatory power and the predictive accuracy of statistical models. 
In this study, the predictive accuracy of semi parametric gamma frailty 
model is greater than Cox proportional hazard model.

Discussion of the results

This study shows that the overall mortality of premature infants 
admitted to NICU in UoGH during the study period was 122(25.2%) 
and that was very satisfactory in comparison to the study carried out 
by Fakher et al., [29], 48% death of preterm infants admitted to NICU 
in Fawzy Moaz Hospital, Egypt. However, more serious as compared 
to the study 20% death of preterm infants in developed countries (All 
European and Asian). The overall mean and median survival time of 
premature infants admitted to NICU of UoGH were 20.38 and 28 days, 
respectively.

The log-rank test and Kaplan Meier curve for equality of survival 
distribution of categories of covariates shows that ANC, Gravidity, 
Parity, Weight of Infants, Gestational Age, Multiple Pregnancy, HIV 
status of Mother, IDM, Gestational Age Vs Weight of infant, Breast 
Feeding Initiated, Hypothermia, Neonatal Sepsis, RDS, PNA, Anemia, 
Hypoglycemia, and Jaundice are statistically significant (P-Value 
< 0.05).The study shows that, we have enough evidence to say that 
the premature infants admitted to NICU survival distribution are 

different or the Kaplan Meier curves are statistically different with respect 
to categories of significant covariates. This finding is consistent with the 
study done by [30], in France for SGA and multiple pregnancies (birth). 
Other variables like Neonatal Sex, TTN, Congenital Malformation and 
Mode of delivery are not statistically significant (P-Value > 0.05), that 
means, we have no enough evidence to say that the premature infants 
admitted to NICU survival curves are different or the Kaplan Meier curves 
are statistically equivalent with respect to categories of these covariates and 
not consistent with the study done by [30] in France for neonatal sex.

In this study, we well fitted the Cox proportional hazard and semi 
parametric gamma frailty models to estimate the hazard of premature 
infants. We identified the potential determinant of premature infants’ 
mortality by applying the stepwise selection of covariates for both 
models. Based on this variable selection procedure; mode of delivery, 
ANC, Gravidity, HIV status, weight of infant, multiple pregnancy, 
hypothermia, RDS, PNA, anemia, GA Vs Weight and breast feed 
initiated are included in the final analysis of the two models. However, 
hypothermia did not satisfy the proportional assumption. Therefore, 
Cox proportional hazard and semi parametric gamma frailty models 
stratified by hypothermia were fitted as suggested by [31]. Among these 
variables ANC similar to the studies done by [32,33], gravidity of (6-
10), HIV status of mother consistent to the study done by [34], RDS 
similar to the studies done by [4,33], PNA similar to the study done 
by [4], anemia and breastfeed initiated were the most determinant and 
statistically significant variables for mortality of premature infants in 
both Cox proportional hazard and semi parametric frailty models. 
These significant variables are statistically associated with time to death 
of premature infants admitted to NICU. These finding is consistent 
with the studies done by [4,32-34] for ANC, RDS, HIV status and PNA. 

Both log-likelihood, AIC, BIC, R2 and concordance model 
comparison methods were applied. Semiparametric gamma frailty 
model was considered the best model as it had the highest R2 and 
concordance; and lowest I-likelihood, AIC and BIC compared to the 
Cox proportional hazard model which is similar to a study carried out 
by Mani et al., for modeling under five children, [17], for breast cancer 
and [19] for time to malaria infection data sets.

There was frailty effect (θ=0.252, P-Value=0.0031,α=0.05) and 
mortality were dependent within as well as across categories of preterm 
infants based on their gestational age. The values of frailty were dispersed 
and hence induced greater heterogeneity in the infant hazards. It also 
indicates stronger association within categories of premature infants. 
Chances of survival among these infants vary greatly according to the 
length of gestation. At the lowest gestational ages, a large proportion of 
deaths with the poorest survival prognosis.

Premature infants that were born from mothers who had ANC 
follow up were statistically significant determinant for mortality of 
premature infants admitted to NICU. The study done by Turmen 
and motherhood [35], states that adequate ANC was recognized as an 
important factor in the reduction of maternal and newborn deaths. So 
the purpose of ANC is to decrease the number of infants born too soon 
(premature birth), too small (low birth weight) and to prevent mother 
and infant sickness and death [36].

Premature infants those were born from mothers with HIV positive 
were 77.6% more likely to die than those infants born from mothers 
HIV negative. This finding is consistent with the study done by Slyker 
et al. Preterm labour may be more common in HIV positive women, 
with rates as high as double those rates seen in uninfected women in 
some reports [37,38].

Group=j Uj= exp(wjϕ) [95% CI]
Gamma: gestational Age ( ≤ 28) 1.575[0.9207, 2.695]
Gamma: gestational Age (28, 30] 1.254[0.6325, 2.487]
Gamma: gestational Age (30, 32] 1.135[0.6568, 1.960]
Gamma: gestational Age (32, 34] 0.527[0.2646, 1.049]
Gamma: gestational Age (34, 37) 0.509[0.2357, 1.099]
Table 6: Common frailty term of premature infants in categories of preterm by 
gestational age.
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Breast feed initiated less than one, [1,2] and greater than 2 hours 
were statistically significant determinant for mortality of premature 
infants admitted to NICU. Significantly positive effects of human milk 
feeding on long-term neurodevelopment are observed in preterm 
infants [39].

Other covariates such as mode of delivery, weight of infant, 
multiple pregnancy and GA Vs Weight were not statistically significant, 
suggesting that these variables are not associated with time to death of 
premature infants admitted to NICU in both models. However, these 
variables were statistically significant for mortality of premature infants 
in studies [32,33,40].

Conclusion
Based on the results of log-rank test and Kaplan Meier curve for 

equality of survival distributions between categories of covariates; we 
can conclude that survival prognosis among premature infants was 

lower for mothers hadn’t ANC, greater than one Gravidity, greater 
than zero Parity, Weight of Infants less than 1600 gram, Gestational 
Age less than 28 weeks, twins (multiple pregnancy), HIV positive of 
mother, IDM, SGA, no breast feeding initiated, Hypothermia, Neonatal 
Sepsis, RDS, PNA, Anemia, Hypoglycemia, and Jaundice. Whereas, 
the survival distributions between categories of other variables like 
Neonatal Sex, TTN, Congenital Malformation and Mode of delivery 
were statistically the same.

Both Cox proportional hazard and semi parametric frailty models 
identifies ANC, gravidity of (6-10), HIV status of mother, RDS, 
PNA, anemia and breastfeed initiated as the most determinant and 
statistically associated with time to death of premature infants admitted 
to NICU. We have compared the models using log-likelihood, AIC, 
BIC, DIC, R2 and concordance. From the value of these entire criterion; 
we conclude that the semi parametric gamma frailty model provide 
a suitable estimation of parameters for premature infants data as 

    Likelihood Ratio test statistic Wald test statistic    
    (P-Value) (P-Value) R2  

Models p     (Max.Possible) Concordance
Cox Proportional Hazard 16 264.3(0.000) 181.3(0.000) 0.420(0.923) 0.891

Semiparametric Gamma Frailty 19 283.0 (0.000) 185.0(0.000) 0.442(0.923) 0.915

Where: P = Number of parameter estimated
Table 7: Testing the Overall Fit of Cox Proportional Hazard and Semiparametric Gamma Frailty Models.

  Cox-Proportional Hazard Semiparametric Gamma Frailty 
Covariates ρ(rho)       χ2 p-value ρ(rho)    χ2 p-value
Mode of Delivery       (SVD)            
                                     CS -0.139721 3.21E+00 0.0733 -0.1564 4.05E+00 0.05141
ANC                           (No)            
                                     Yes         -0.041893 2.51E-01 0.6165 0.0024 8.54E-04 0.9767
Gravidity                     (1)            
                                      2 - 5    -0.004627 2.79E-03 0.9579 -0.0103 1.32E-02 0.9085
                                      6 - 10       -0.069094 6.22E-01 0.4302 -0.0317 1.35E-01 0.7128
HIV status(No)            
                                      Yes      0.065262 6.05E-01 0.4366 0.073 7.40E-01 0.3898
Weight of Infant    (<1600)            
                             [1600, 2500]    -0.03918 2.70E-01 0.6034 -0.0181 5.10E-02 0.8214
Multiple Pregnancy    (No)            
                                     Yes      -0.018613 4.39E-02 0.8341 0.022 6.14E-02 0.8042
RDS                             (No)            
                                      Yes            0.014764 3.36E-02 0.8545 -0.0177 5.34E-02 0.8172
PNA                             (No)            
                                      Yes            -0.005023 3.49E-03 0.9529 -0.0211 5.94E-02 0.8075
Anemia                        (No)            
                                      Yes         -0.009122 1.11E-02 0.9161 0.0299 1.11E-01 0.7386
GAvsWeight(SGA)            
                                      AGA 0.029036 1.23E-01 0.7256 0.0118 1.98E-02 0.8881
                                      LGA    0.069587 5.99E-01 0.4388 0.0569 4.00E-01 0.527
Breast Feed Initiated(Not atall)            
<1 Hr -0.000616 5.09E-05 0.9943 0.0388 2.11E-01 0.6462
                                    [1, 2] Hr 0.106853 1.37E+00 0.2425 0.1509 2.97E+00 0.0847
>2 Hr 0.044064 2.43E-01 0.6221 0.0934 1.11E+00 0.2917
                                Other Milk 0.02515 7.54E-02 0.7836 0.0244 7.57E-02 0.7831
GLOBAL           NA 8.48E+00 0.9334      NA 1.36E+01 0.8861

Categories in the bracket are reference categories.
Table 8: Schoenfeld Residuals test for proportionality assumption of each covariate and overall model of the stratified Cox Proportional Hazard and Semiparametric 
Gamma Frailty Models.
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compared to Cox proportional hazard model. There was heterogeneity 
or frailty effect in categories of premature infants based on gestational 
age. Therefore, premature infants in the same categories share the same 
unobserved frailty.

From the study, we recommend that more efforts should be exerted 
to evaluate the magnitude of the problem of prematurity in UoGH 
through better coverage of antenatal care in the primary health care 
centers and through better statistical systems in both primary care and 
hospitals. The medical managements better to arrange a program for 
continuous training to the medical staff for better assessment, diagnosis 
and management of premature cases. The potent benefits of human 
milk are such that all preterm infants should receive human milk. Milk 
from the infant’s own mother, fresh or previously frozen, should be the 
primary diet, and it should be fortified appropriately for the infants. If 
the mother’s milk is unavailable despite significant lactation support, 
pasteurized donor milk should be used. There medical managements 
should facilitate more research to find out more precise diagnosis of 
causes of premature infants and maternal adverse outcome with better 
computerized recording system. 
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