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Cancer typically occurs as the consequence of mutations or 
deregulated expression of genes that control cell survival, proliferation 
and/or death. Given its remarkable intricacy and complexity, the 
concept of cancer as a disease that can be greatly impacted by 
alterations in epigenetic regulation (and thus gene expression) has 
gained considerable momentum within the scientific community. In 
the 1990s, one focal point of epigenetic cancer research was ascertaining 
the extent of DNA methylation abnormalities and defining how DNA 
methylation influences expression of oncogenes and tumor suppressor 
genes in transformed cells [1]. However, during the past decade, this 
focus has been significantly broadened by the upsurge of research 
identifying and studying the role of molecules that affect chromatin 
dynamics (i.e. global DNA methylation and post-translational 
modifications of histones) in cancer cells. This new wave of research 
has given way to an emerging view of what may now be called “the 
cancer epigenome,” which consists of heritable abnormalities that 
occur in the absence of DNA sequence alterations in the genome [2]. 

DNA methylation is probably the most widely studied and 
commonly understood epigenetic alteration. It is involved in the 
regulation of a wide range of cellular and molecular processes including 
chromatin structure and remodeling, X-chromosome inactivation, 
genomic imprinting, silencing of transposable elements, chromosome 
stability, and gene expression [3,4]. Global hypomethylation, as well 
as hypomethylation of transposable elements, is associated with 
genomic instability, while hypermethylation of the gene promoter 
region is associated with transcriptional repression [5,6]. Likewise, 
post-translational modifications of histone tails play a critical role in 
chromatin remodeling, nuclear architecture, and gene transcription 
[7,8]. The functional consequences of alterations in global DNA 
methylation and histone modification patterns are numerous, ranging 
from subtle changes in behaviors to major clinical manifestations, 
including cancer. 

With the emergence of the “cancer epigenome”, a considerable 
amount of time and effort is being invested in the characterization of 
epigenetic markers, of which novel molecular targets can be identified 
and explored for cancer drug development. Presently, there are four 
FDA-approved drugs with an “epigenetic mode” of action in use within 
clinics: DNA methyltransferase (DNMT) inhibitors 5-azacytidine 
(Vidaza), decitabine (20-deoxy-5-azacytidine, Dacogen), histone 
deacetylase (HDAC) inhibitors suberoylanilide hydroxamic acid 
(SAHA, Zolinza), and romidepsin (Istodax). Numerous other DNMT 
and HDAC inhibitors are currently being developed and evaluated 
in preclinical studies, as well as in various stages of clinical trials [9]. 
Notably, 5-Azacytidine and decitabine have been successful in treating 
myelodysplastic syndrome and myeloid leukemias [10-12]. Moreover, 
SAHA and romidepsin are currently being used for the treatment of 
cutaneous T-cell lymphoma [13]. However, studies have shown that 
both of these established drug classes exhibit a considerable limitation 
in their specificity largely due to lack of understanding for their 
exact mechanisms of action. Recent studies have shown that HDAC 
inhibitors have a substrate spectrum that is broader than originally 

thought, and are capable of deacetylating numerous proteins that are 
not associated with epigenetic regulation [14]. In parallel, the induction 
of global DNA demethylation via inhibition of DNA methyltransferases 
displays broad effects in changing DNA methylation patterns without 
tumor-specificity, which is believed to promote, rather than suppress, 
oncogenic processes in many cancer patients [9,15]. Furthermore, 
drugs that perturb global DNA demethylation and/or normal histone 
modifications can potentially harm the function of adult stem cell 
populations in cancer patients [9]. Admittedly, the current repertoire 
of anti-cancer drugs that are based on perceived epigenetic targets has 
significant limitations in clinical practice.

It is well known that cancer cells exhibit aberrant DNA 
methylation patterns and specific changes in histone modifications, 
but the epigenetic alterations that may precede and/or contribute to 
the initiation and progression of the disease are poorly understood. 
Recent technological advances in high throughput DNA sequencing 
and epigenetic profiling has revolutionized our understanding of the 
development and progression of many vexing diseases, including 
cancer. With respect to epigenetic cancer therapy, a higher degree 
of specificity could be achieved if the drugs were directed against a 
cancer/tumor-specific epigenetic modification pattern. For example, it 
has been demonstrated that genes that are affected by de novo DNA 
methylation during carcinogenesis are pre-marked by histone H3 
lysine 27 trimethylation (H3K27me3), suggesting that tumor-specific 
targeting of de novo methylation is pre-programmed by an established 
epigenetic system, which normally marks genes for repression [16]. In 
addition, H3K27 trimethylation is also part of “bivalent” chromatin 
domains, which consist of large regions of H3K27me3 and harbor 
smaller regions of histone H3 lysine 4 methylation (H3K4me3), a 
mark of gene expression activation. It has been proposed that bivalent 
domains silence developmental genes in embryonic stem cells, while 
keeping them poised for activation, and that the relationship between 
H3K27me3 and de novo DNA methylation may potentially reflect 
the presence of a stem cell-like epigenetic program in cancer cells 
[17,18]. Moreover, a number of mutations have been detected in genes 
associated with DNA methylation (e.g., TET2, IDH1/2, DNMT3A) 
and could potentially serve as patient stratification biomarkers 
for treatment with a demethylation drug [9]. Covalent chromatin 
modification patterns could also potentially serve as biomarkers of 
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exposure to carcinogenic agents, and may provide further insight 
into tumor initiation and progression induced by those agents. In 
fact, changes in DNA methylation and global histone modifications 
have already been reported in human populations who are exposed to 
carcinogenic metals [19-21].

The role of epigenomics in cancer research is expanding in its 
scope and depth. FDA-approved cancer therapy drugs that primarily 
target DNA methylation and global histone modifications are being 
increasingly used in clinical practices, and many more leads are being 
developed and evaluated at the time of this writing. Genomic and 
epigenomic profiling of tumors, along with epigenetic biomarkers 
of exposure to carcinogenic agents, is on the rise due to the advent 
of new, powerful sequencing technologies and bioinformatics tools. 
It’s clear that cancer treatment approaches in the future will demand 
information of both genomic and epigenomic analysis of tumor cells. 
We anticipate exciting and novel discoveries in the epigenomic arena. 
However, the ultimate success of these endeavors rests on our ability 
to translate these discoveries into better diagnostic and treatment 
approaches for cancer. 
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