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Introduction
Nonlinear boundary value problems (BVPs) of ordinary type plays 

an important role in all branches of science and engineering especially 
the two point BVPs. These types of equations appears in a wide variety 
of problems including but not limited to chemical reactions, hear 
transfer and solution of optimal control problems. Therefore, the need 
for fast and efficient methods for solving this type of equations is a 
must.

In this work we will develop a collocation approach based on 
Bernoulli polynomials for solving the famous Bratu's equation in the 
form

( ) ( )

( ) ( )

0 , (0,1)

u 0 1 0

u xu x e x

u

λ ± =′′ + ∈

= =
			               (1)

The closed form for the exact solution to eqn. (1) is
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where θ satisfies 2 cosh
4
θθ λ  =  
 

. Eqn. (1) has zero, one or two 

solutions when λ>λc;λ=λc and λ<λc respectively, where the critical value 

λc satisfies the following equation 28sec
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. It was evaluated 

from that the critical value of λc has a value of λc=3.513830719.

This type of equation has many applications including the modelling 
of a combustion in a numerical slab, the ignition of fuel of the thermal 
theory, the thermal reaction process modelling, the expansion of the 
universe model and open questions regarding this theory, chemical 
reaction theory and nanotechnology [1].

There has been numerous analytic and numerical methods that 
has been applied for solving Bratu's equation with different forms of 
exact solutions [2,3]. For instance, B-spline method [4], parametric 
spline [5], non-polynomial spline [6], quintic spline [7], cubic spline 
[8,9], Sinc-Galerkin [10,11], lie group shooting [12], Adomian 
decomposition method [13-17], Homotopy perturbation method 

[18-20], optimal perturbation [21], successive differentiation method 
[22,23], Chebychev wavelet [24,25], Legendre wavelet [26], variation 
iteration [27-29], iterative finite difference [30], genetic algorithm 
based methods [31], multi step iterative [32], neural network [33,34], 
particle swarm shooting [35] and pseudospectral method [36,37]. In 
addition to the standard Bratu problem, there are other Bratu-type 
problems which will be introduced and examined later.

Bernoulli polynomials have gained increasing importance in 
numerical analysis since they are straightforward and need less 
computational errors. Many researchers have been working on proving 
the efficiency of this method [38-43]. 

The organization of the paper is as follows. We recall the basic 
concepts of Bernoulli polynomials and their relevant properties needed 
hereafter. Bernoulli method is presented for solving the general Bratu's 
type equations. Some numerical examples are presented along with 
a comparison with other techniques. Finally, the closing stage which 
provides the conclusions of the study [44-47].

Fundamental Relations
Bernoulli polynomials play an important role in different areas 

of mathematics, including number theory and the theory of finite 
differences. They are also can be found in the integral representation 
of the differentiable periodic functions, since they are employed for 
approximating such functions in term of polynomials. The classical 
Bernoulli polynomials Bn(x) is usually defined by means of exponential 
generating functions [40].
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from which we can find the following known expansion
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In this work, Bernoulli-collocation method is proposed for solving nonlinear Bratu's type equations. The 
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which is the most known expansion of the Bernoulli polynomials and 
from we can generate the first few polynomials as Figure 1
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these polynomials have many interesting properties from which the 
following Figure 1
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In the next we will introduce Bernoulli matrix of differentiation 
that will be needed later.

Bernoulli operational matrix of differentiation

We will use Bernoulli approximation technique to approximate the 
solution of eqn. (1) expressed in the truncated Bernoulli series in the 
form

( ) ( ) ( )
0

N

N n n
n

u x c B x x
=

= =∑ B c 			                   (3)

where 0{c }N
n n=  are the unknown Bernoulli coe cients, N is any chosen 

positive integer such that N ≥2, and Bn(x),n=0; 1; : : : ; N are the Bernoulli 
polynomial of the rst kind which are constructed according to equation 
(2), the Bernoulli coeffcient vector c and the Bernoulli vector B(x) are 
given by

ct=[c0; c1,…..,cN ];    B(x)=[B0(x); B1(x); : : : ; BN (x)].

According to eqn. (3)
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Since D is a lower triangular matrix with nonzero diagonal elements 
and det (D)=1, so D is an invertible matrix. Thus, the Bernoulli vector 
can be given directly from

B(x)=Ω(x) Dt	 (4)

note that []t, denotes transpose of the matrix [] and Bt(x) and Ω(x) 
be the (N+1)×1 and D is the (N+1)×(N+1) operational matrix whose 
elements are
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Now, the matrix forms of the solution functions as

yN =Ω(x) Dt c	        (6)

According to the eqn. (5) the following formula is concluded 
evidently. Also, the relation between Ω(x) and it's ith derivative Ω(1)

(x) is
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and the following formula holds as

Ω(k)(x)=Ω(x)Mk,    k=1,2				                     (8)

where Ω(i)(x) is denoting the it’s derivative of Ω(x), we have

( )(k) , 1,2k t
Nu x M D c k= Ω = 			                  (9)

Application of the Proposed Method
First, we need to treat the nonlinear term in eqn. (1) by expanding 

it using Taylor series expansion in the form
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By substituting the expanded term from eqn. (10) into eqn. (1), the 
equation becomes
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Second, we will use the shifted chebychev defined on the interval 
[0,1] in the form

1 1 cos , 0,1,......,
2k

kx k N
N
π  = − =    

Figure 1: Shows the first few Bernoulli polynomials on the interval [0,1].
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The matrix form of the boundary conditions represented in eqn. 
(1) will be in the form

B(0)=[B0(0),B1(0),B2(0),...,BN(0)]=0 

B(1)=[B0(1),B1(1),B2(1),...,BN(1)]=0			                 (16)

By replacing two rows of the augmented matrix [Θ: F] with the 
boundary conditions defined from eqn. (16), we have

cΘ = F  					                (17)

Now we have a nonlinear system of N+1 equation in N+1 unknown 
coefficient c. We can obtain these coefficients by solving the above 
nonlinear system using the following algorithm.

Algorithm
1.  Input (integer) N.

Input (double) tol.

Input (array) cold=c0, (initial approximation, c0 with N +1 
dimension, are chosen so that the boundary conditions are satis ed).

2. ( ) :  old newc cΘ = = F  is a linear algebraic equation system which 
is solved and cnew is found.

Go to (2).

2.1 If |Cold-Cnew|<tol then cnew=c, break (the program is finished).

2.2 Else then cold←cnew.

3. Go to (2).

Numerical Examples
To illustrate the ability, reliability and the performance of the 

proposed method for Bratu's problem, some examples are provided. 
The results reveal that the method is very effective and simple. All 
computations were carried out using Matlab 2014a on a personal 
computer. The absolute error can be calculated according to the 
following

||EN(x)||=max |uExact (x
k

)-u
Bernoulli

(x
k

)|, k=0; 1; 2; : : : :

Example 1

First, we consider the initial value problem in the form 
[31,9,25,21,15,46]

( ) ( )( )" 2  0;      0,1u xu x e x′′ − = ∈

subject to the initial conditions

( ) ( )0 0 0u u′ = =

which has the exact solution given by

u(x)=−2ln[cos(x).

Table 1 exhibits the maximum absolute error at different values 
of N along with the elapsed CPU time in seconds. Also, in Table 2 a 
comparison between the reported results in [31, 9, 25, 21, 15, 46] along 
with our method at N=18. This table indicates that our method provide 
better results than the other methods. Figure 2 demonstrates the 
Bernoulli approximate solution versus the exact solution for x 2 [0; 1].

Example 2

Next, we apply our method for the solution of the special form of 
Bratu equation [4-12,17,25,28,30,33-34,46]

After substituting those collocation points into eqn. (11), we reach 
the following system
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from eqn. (12), we need to approximate the term uv(xk),k =0,1, 2, 3; : : : . 
We will need the following theorem.

Theorem

The approximation of the function uv(xk), k=0,1,…., N can be 
represented according to the following relation
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By substituting the above theorem into eqn. (12), we reach the 
following theorem.

Theorem 

If the assumed approximate solution of the problem eqn. (12) is 
eqn. (8), then the discrete Bernoulli system is

( ) ( ) ( ) ( ), 0 , , 2,3,4....
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Proof: If we replace each term of (12) with its corresponding 
approximation given

by eqns.(2), (9) and (13) and substituting x=xk collocation points.

The matrix form for this system is

Θc=F 					                   (15)
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( ) (x) 0, (0,1)uu x e xλ′′ + = ∈

subject to the boundary conditions

u(0)=u(1)=0.

with the exact solution
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1cosh
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The form of the above equation is very familiar and has a 
tremendous work for solving it as mentioned in the literature. We 
applied our method with various (Figure 2) values for=0:1; 0:5; 1; 
2; 3 and 3:51. The computed maximum absolute errors at different 
values of N and are tabulated in Table 3. A comparison with the other 
methods reported in the literature are presented in Table 4 shows that 
our method is computationally effective even for=3:51 which is near 
the critical value. The graph of the approximate solutions for different 
values of has been plotted in Figure 3.

Example 3

Now, we turn our attention to the BVP of Bratu's equation in the 
form [21,31]

( ) ( ) ( )2" 0, 0,1u xu x e xπ −′′ + = ∈

subject to the boundary conditions

u(0)=u(1)=0.

This equation is a standard Bratu equation for which λ =π 2 >λc 
which has two possible solutions in the form u(x)=ln(1±sin( x)). This 
solution with the negative sign blows up at x=0:5 so we will use the 
solution of positive sign which is convergent and bounded in the form

u(x)=ln [1+sin( x)]

Maximum absolute error is tabulated in Table 5 along with the 
CPU time and a comparison is made in Table 6 between our method 
along with the other methods in [21,31]. From Table 6, we noticed that 
our method is more accurate than the other existing methods. Figure 4 
demonstrates the Bernoulli approximate solution and the exact which 
appears to be in good agreement with each other.

Example 4

 Finally, consider another form of Bratu's equation

( ) ( ) ( )2" 0, 0,1u xu x e xπ −′′ + = ∈

subject to the boundary conditions

u(0)=u(1)=0.

with the exact solution

u(x)=-log [1-cos ((0:5+x)π)].

The maximum absolute error for this problem is tabulated in Table 7 
Figure 2: Bernoulli solution and exact solution for example 1.

N ||EN(x)|| CPU time (sec)
4 1.39189E-02 1.264
6 8.70130E-04 1.329
8 5.39038E-05 1.670
10 3.33058E-06 2.310
12 2.05470E-07 2.868
14 1.26651E-08 3.674
16 7.80110E-10 4.469
18 4.80861E-11 11.98

Table 1: Maximum absolute error and CPU time for Example 4.1.

Presented method, N=18 4.809E-11
Optimal spline method [9] 3.450E-06

Restarted Adomian decomposition [15] 5.745E-04
Optimal perturbation iteration [21] 4.230E-04

Chebychev wavelet method[25] 1.528E-05
ASM method [31] 6.220E-07
Taylor wavelet [46] 7.801E-08

Table 2: Comparison of maximum absolute error for Example 1.

N λ=0:1 λ=0:5 λ=1:0 λ=2:0 λ=3:0 λ=3:51
4 2.2697E-08 3.4346E-06 3.60159E-05 5.8666E-04 7.4020E-03 2.8391E-02
6 7.2250E-12 5.3149E-09 1.06201E-07 2.8664E-06 5.3078E-05 7.7256E-03
8 3.9100E-15 2.4657E-11 1.12485E-09 8.6920E-08 3.1672E-06 4.1393E-04
10 2.3922E-15 4.7454E-13 1.15237E-11 1.5694E-09 8.8354E-08 9.0424E-06
12 2.3939E-15 4.4039E-13 3.3323E-12 1.2423E-10 4.4392E-09 1.1319E-06
14 - - 3.4237E-12 6.4105E-12 3.1209E-10 7.8326E-08
16 - - - 5.9817E-12 1.2622E-10 7.0247E-09
18 - - - - - 5.5903E-10

Table 3: Maximum absolute error at different λ Example 2.
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at different values of N along with the CPU time. A comparison is made 
along with other methods which is given in the literature in Table 8 
which proves the applicability of the purposed algorithm of providing 
good results. Figure 5 demonstrates the Bernoulli approximate solution 
and the exact which appears to be in good agreement with each other.

Method λ=1:0 λ=2:0 λ=3:51
Presented method, N=14 3.4237E-12 6.4105E-12 5.5903E-10

Sinc galerkin [10] 2.010E-10 1.801E-11 1.4528E-07
Optimal spline [9] 1.810E-07 3.940E-11 ×

Chebychev wavelet [25] × 5.487E-06 ×
Spline method [8] 8.773E-05 8.971E-04 6.890E-06

Lie group shooting [12] 1.018E-06 5.220E-06 7.305E-05
B-spline method [4] 8.892E-06 5.561E-05 1.350E-01

Restarted Adomian [17] 9.410E-07 2.300E-04 ×
Adomian with Taylor [17] 4.900E-06 6.800E-04 ×

Spline method [6] 2.178E-06 7.264E-07 ×
Variational iteration [28] 4.210E-05 1.416E-03 ×

Parametric spline [5] 5.870E-10 3.530E-08 ×
Finite di erence [30] 5.703E-10 2.096E-09 6.21E-07
Neural network [34] 3.20E-03 4.95E-03 1.76E-02

Particle swarm shooting [35] 1.150E-08 6.71E-09 3.58E-06
Mexican Hat wavelet [33] 1.90E-08 3.75E-08 1.72E-05

Taylor wavelet [46] 7.760E-12 1.190E-09 1.31E-06
Matlab routine bvp4c [47] 2.47E-07 1.33E-06 1.43E-02

Mathematica routine NDsolve 5.71E-09 5.88E-09 3.01E-07

Table 4: Comparison of maximum absolute error at different λ for Example 2.

Figure 3: For λ = 0.5,1.0,2.0,3.0 and λ = 3.51, the approximate solution of the 
purposed method for N = 14.

Figure 4: Bernoulli solution and exact solution for example 3.

N kEN(x)k CPU time (sec)
4 2.20480E-03 1.264
6 6.78106E-05 1.329
8 2.64416E-06 1.670
10 1.13839E-07 2.310
12 5.62457E-09 2.868
14 2.64951E-10 3.674
16 4.76705E-11 4.469
18 9.04055E-13 11.98

Table 5: Maximum absolute error and CPU time for Example 3.

Presented method, N=18 9.04055E-13
Optimal perturbation iteration [21] 8.886E-07

ASM method [31] 8.034E-06
GA-ASM method [31] 3.449E-05

GA method [31] 2.088E-02

Table 6: Comparison of maximum absolute error for Example 3.

N ||EN(x)|| CPU time (sec)
4 2.20480E-03 1.065
6 6.78106E-05 1.269
8 2.64416E-06 1.696

10 1.13839E-07 2.266
12 5.62457E-09 2.859
14 2.64951E-10 3.624
16 4.76705E-11 4.794
18 7.46625E-13 5.573

Table 7: Maximum absolute error and CPU time for Example 4.
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Figure 5: Approximate solution versus exact solution for example 4.

Presented method, N=18 7.46625E-13
Sinc-Galerkin [10] 8390E-12

Optimal Spline method [9] 4.341E-10
GA method [31] 1.293E-06

Taylor Wavelet [46] 1.434E-07

Table 8: Comparison of maximum absolute error for Example 4.

Conclusion
In this paper, we showed that Bernoulli-collocation method can be 

utilized to and an approximate solution of the nonlinear Bratu's type 
equations. The method reduces the problem into a system of nonlinear 
algebraic equations and this system is solved using a novel technique. 
Also, the efficiency of the method with respect to the other method was 
shown. In comparison to other methods, we illustrated that Bernoulli-
collocation method has very high accuracy.
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