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Introduction
Advances in nanomedicine and materials chemistry provide 

tremendous opportunities to develop targeted drug and gene delivery 
systems in addressing the several therapeutical issues, such as non-
specificity, poor pharmacokinetic profiles, unsatisfactory treatment 
efficacy, and severe systemic toxicity [1]. To overcome these challenges, 
drug or gene delivery systems must overcome a series of biological 
barriers to escort therapeutical agents to specific pathological site. 
These include both extracellular barriers and intracellular barriers 
[2]. To overcome extracellular barriers, the vehicles are necessary to 
have high stability and prolonged circulation time in the blood stream 
[3]. However, intracellular barrier represents another significant 
barrier that can hinder drug release, including cellular internalization, 
endosomal escape, and controllable drug release [4]. Comprehensive 
consideration of the both extracellular and intracellular barriers to 
targeted drug and gene delivery is crucial important for the rational 
design of improved systems. 

Nanoparticles (NPs) mediated drug delivery systems have the 
potential ability to overcome the biological barriers due to EPR 

effect, efficient drug reservoir, as well as the structural flexibility to 
be modified to release the therapeutic agents in the desired site [5]. 
Multiple therapeutic agents including anticancer drug, protein, gene 
and imaging agents can be carried into nanoparticles physically or 
chemically [6]. For their encapsulation, a range of morphologically 
different nanostructures including micelles [7], liposomes [8], 
polymer-drug conjugate [9], dendrimer [10], hydrogel [11], grapheme 
oxide [12], silica [13] etc. have been developed (Figure 1). NPs with 
appropriate size have more opportunities to accumulate at the tumor 
site through enhanced permeability and retention (EPR) effect [14-16]. 
Moreover, these NPs can also be conjugated or grafted with affinity 
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ligands such as folic acid [17], monoclonal antibodies [18,19], peptides 
[20] or aptamers [21] to increase the selectivity for tumor cells and the
tumor microenvironment.

It has been realized that many therapeutics such as anticancer 
drugs, gene and protein have to be delivered and released in the cellular 
compartments (e.g. cytoplasm or cell nucleus) so that they can exert 
therapeutic effects. Thus, NPs engineered with specific triggering 
mechanism that can release therapeutic agents intracellularly is highly 
preferred. 

In the past several years, development of novel stimuli triggered 
NPs that release therapeutics in response to tumor intracellular signal, 
in particular high redox potential, has received great interest. In this 
review, we will focus on recent exciting advances in designing various 
redox sensitive NPs related to high glutathione (GSH) level in tumor 
intracellular microenvironment for intracellular drug delivery. Those 
redox sensitive NPs are particularly concentrated on recent emerging 
NPs with disulfide bond linked sheddable shell like PEG. The drug 
delivery systems engineered with redox sensitive mechanism will open 
up new possibilities in cancer therapy. 

Redox Environment for Intracellular Drug Delivery 
Tumor tissue has different intracellular microenvironments 

as compared to normal tissue, such as low pH (4.5-6.5) [22], high 
temperature (40-42ºC) [23] and over-expressed GSH (2–10 mM) [24]. 
These biological features can be employed to design NPs with pH, 
temperature, redox sensitive NPs engineered with intracellular drug 
release profiles respectively. Particularly, redox-sensitive NPs for drug 
or gene delivery have received increasing interest over the past years. 

GSH is a tripeptide that regulates the cellular reductive microen-
vironment. There are approximately 2–10 mM GSH levels in intra-
cellular compartments, which are 100-1000 times higher than that in 
human plasma and blood [25]. Moreover, the cytosolic GSH level in 
some tumor cells has been found to be at least four times higher than in 
normal cells [25]. These sharp differences in GSH levels between tumor 
and normal cells develop the possibility of designing GSH sensitive 
NPs. NPs with GSH sensitive mechanisms can promote intracellular 
drug or gene delivery after cellular uptake by disulfide cleavage, and 
then regulating the intracellular fates of delivered drugs and genes.

Redox Sensitive NPs with Disulfide Bond Linked 
Sheddable Shell

Among redox sensitive NPs, those with disulfide-bond-linked 
sheddable shell is particularly interesting and have attracted broad and 

intensive attention in the past few years [26,27]. These nanoparticles 
are generally composed of an inner core with encapsulated therapeutic 
agents surrounded by hydrophilic, detachable shell [28,29]. The 
detachable process occurs at a specific manner dependent on the linker 
between outer shell and inner core. The linker can be redox-, acid-, and 
enzyme- cleavable according to the aim of the design or condition of 
delivery process [30]. In this review, it is concentrated on disulfide bond 
linked nanoparticles. Normally, these nanoparticles keep intact without 
obvious drug leakage due to structural integrity. In contrast, the 
shedding of the shell in redox environment via disulfide cleavage would 
enable the fast drug release intracellularly for structural disassembly of 
the nanoparticles [25]. Different from conventional stimuli responsive 
nanoparticles, the structural disassembly of sheddable nanoparticles is 
fast and complete, since the whole shell can be totally removed from 
the core exposing drug loaded in the inner core outside. Therefore this 
strategy can lead to a much more accelerated drug release. Moreover, 
the drug release is relatively confined into a specific redox area, which 
is necessary for localized drug delivery. Figure 2 depicts the pathway of 
these novel nanostructures that act in the biological condition.

For effective therapy, rapid intracellular drug release is highly 
preferred upon immediate arrival of the delivery system. Therefore, 
sheddable NPs are particularly suitable for this aim. Most redox-
sensitive NPs contain disulfide bond (-S-S-) linked PEG shell, 
which can be cleaved rapidly in reductive environment analog to 
tumor intracellular environment, while relatively stable in blood 
circulation (Figure 2) [26,27,31]. The most often used disulfide 
bond containing agents are cystamine [32-34], dithiodipropionic 
acid [35], bis(2-methacryloyloxyethyl) disulfide [36], dimethyl 
3,3-dithiobispropionimidate (DTBP) [37], 3,3’-dithiobis(sulfosuccin
imidyl propionate) (DTSSP) [38], dithiobis (succinimidylpropionate) 
(DSP) [39], 2-(pyridyldithio)-ethylamine (PDA) [40], cystamine 
bisacrylamide (CBA) [41], and N-Succinimidyl 3-(2-pyridyldithio) 
propionate (SPDP) [42]. Table 1 summarizes some representative NPs 
that bear disulfide bonds or other crosslinker with a sheddable shell for 
intracellular drug or gene delivery. 

Nano-Formulations with Redox Sensitivity for 
Intracellular Drug Delivery 
Redox sensitive micelles with disulfide bond linked 
sheddable shell

Redox sensitive micelles containing a disulfide linkage between 
the hydrophilic and hydrophobic segments creates a so-called “shell-

Figure 1: Schematic illustration of representative NPs.

Figure 2: Schematic illustration of redox sensitive NPs with disulfide linked 
PEG shell which can respond to tumor intracellular GSH microenvironments 
for controlled release of therapeutic agents.
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copolymers. DOX and DNA were chosen as the model drug and gene 
respectively. The DOX release was remarkably accelerated in 10 mM 
DTT compared to the control micelles, which is associated with the 
detachment of the hydrophilic PDMA shell in reductive environment. 
Meanwhile, the PCL-SS-PDMA block polymers exhibited high DNA 
binding affinity and cellular uptake efficiency. A ten-fold transfection 
efficiency of the PCL-SS-PDMA/DNA complexes was found in human 
cancer cells KB and CAL-27, as compared to PEI 25K. These novel 
sheddable and cationic micelles were found to be promising carriers for 
drug and gene delivery in cancer therapy.

Zhong’s group developed reduction sensitive shell-sheddable 
micelles based on disulfide linked poly(ethylene glycol)-SS-poly(ε-
caprolactone) (PEG-SS-PCL) [68] and dextran-SS-PCL (Dex-SS-PCL) 
[48] copolymers. These prepared micelles showed a faster DOX release 
profile under 10 mM DTT than that of control micelles without disulfide 
linkage. Wang’s group developed redox sensitive poly(ε-caprolactone)-
SS-poly(ethyl ethylene phosphate) (PCL-SS-PEEP) micelles for both 
drug delivery [69] and overcoming multidrug resistance (MDR) [29]. 
The micelles exhibited GSH-responsive structure change and enhanced 
intracellular DOX release in A549 cells [69]. Moreover, the redox 
sensitive micelles were also shown to overcome MDR by enhanced 
DOX release in MCF-/ADR cells triggered by the high intracellular 
GSH levels [29]. These results indicate that redox-sensitive micelles 
exhibit promising advantages in drug delivery as well as improving 
overall therapeutic efficiency of anticancer drugs.

Redox sensitive prodrugs 

Kataoka et al. [70] pioneered pH sensitive prodrug design by 
conjugating DOX onto copolymer chains via an acidic cleavable 
hydrazone bond. Similarly, redox sensitive prodrugs are fabricated by 
conjugating therapeutic drugs, protein, or gene onto the backbone of 
polymers via disulfide linkages, which can release therapeutic agents 
under reduction environment such as the cytosol or nucleus (2-10 mM 
GSH) [1,71]. 

Our group has covalently attached drug methotrexate (MTX) onto 
PEG polymers with a disulfide linkage [52]. The prodrug was structured 

sheddable” micelle [30]. Originally, Kataoka’s group [28] developed 
PEG conjugated cationic micelles [PEG-SS-PAsp(DET)] as nonviral 
gene vectors. The unique design included a detachable PEG chains 
upon the intracellular reduction environment (10 mM DTT). Due to 
PEG detachment, the cationic segment based on poly (aspartamide) 
could induce more effective endosomal escape with minimal 
cytotoxicity in the endosome. The micelles showed both a 1-3 orders 
of magnitude higher pDNA transfection efficiency and a more rapid 
onset of pDNA expression than that of control micelles containing 
PEG-PAsp(DET) without disulfide linkage. Building on this earlier 
work, they examined the in vivo gene expression and antitumor effect of 
PEG-SS-P[Asp(DET)] micelles with GD4C-TNF-α-encoding plasmid 
by intraperitoneal (i.p.) administration [63]. The results showed that 
PEG-SS-PAsp(DET) micelles exhibited a higher (Pb0.05) transgene 
expression compared with PEG-PAsp(DET) in tumors without 
significant hepatic and renal toxicities. 

In a similar strategy, our group has also conducted a series of studies 
based on PEG-Polylysine (mPEG-PLL) block copolymer [64,65]. We 
developed mPEG-SS-PLL/DNA complexes with disulfide-linkage for 
selective and efficient DNA delivery (Figure 3) [66]. These complexes 
were found to be stable in an aqueous medium with 10% serum, while 
fast aggregation occurred in 10 mM GSH environment due to PEG 
detachment via disulfide bond cleavage. Importantly, mPEG-SS-PLL45 
showed comparable transfection activity and lower cytotoxicity as 
compared to PEI 25 kDa in both 293T and Hela cells, which indicated 
that the mPEG-SS-PLL complexes was potential non-viral gene vector 
for gene delivery. Additionally, the above system was also found to be 
suitable for redox responsive drug delivery [64]. The micelles could 
rapidly disassemble and release an encapsulated anticancer doxorubicin 
under tumor-relevant GSH levels, which was three to five times faster 
than in the absence of GSH. 

For a combinational delivery, we recently designed a degradable, 
sheddable cationic micelles for GSH-mediated intracellular delivery 
of both drug and gene (Figure 4) [67]. The micelles were about 70 
to 200 nm, self-assembled form poly(ε-caprolactone)-b-poly(N,N-
dimethylamino-2-ethylmethacrylate) (PCL-SS-PDMA) diblock 

NPs Polymers Sheddable Shell Model Drug/Gene Crosslinker Ref.

Micelle

PEG-PLys-PPhe PEG DTX DTSSP [43]
poly(VBPT-co-PEGMA)-S-S-MP PEG 6- MP VBPT [44]

mPEG-ss-CPP-SA PEG Curcumin DTDP [45]
PBLG-b-dextran Dextran DOX DTT [46]

Dextran-g-lipoic acid Dextran DOX DTT [47]
Dex-SS-PCL Dextran DOX Dex-SS-py+ PCL-SH [48]

MPEG-SS-PLA mPEG PTX DTT+Py-SS-Py+Py-SH [49]
PEG-Pu(100%SS)-PEG PEG Pyrene 2-Hydroxyethyldisulfide [50]
PEG-SS-COS-SS-PEI Chitosan DNA 3,3'-Dithiodipropionic acid [51]
PEG-SS-P[Asp(DET)] PEG pDNA Cysteamin [28]

Polymer-
Drug conjugate

(MTX)2 PEG(MTX)2 PEG MTX Cystamine [52]
CPT-SS-PEG-SS-CPT PEG CPT Cystamine [53]

PAsp(-SS-siRNA) ---- siRNA PDTA [54]
multi-siRNA/LPEI PEI multi-siRNA Dithio-bis-maleimidoethane [55]

Dendrimer
HPHSEP-star-PEPx ---- DOX 2-ethoxy-2-oxo- 1,3,2-dioxaphospholane (EP) [56]

PAMAM-SS-NAC PAMAM NAC SPDP [57]

Graphene Oxide
NGO-SS-mPEG mPEG DXR Cystamine [34]

GO-SS-Ce6 ---- Ce6 Cystamine [58]
rGO/QC-PEG/Plu-SH PEG DOX Thiol grafted Pluronic [59]

SiO2 NPs
PLGA-Organosilica Silica ---- Pyrene TESPDS [60]

β-cyclodextrin-MSNs β-CD Rhodamine B dye SPDP [61]
MSNs-SS-mPEG mPEG Fluorescein dyes MSNs-SH+ mPEG-SS-Pyridine [62]

Table 1: Overview of different stealthy NPs engineered with redox sensitive mechanism for drug or gene delivery.
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in H-shape with four arms of MTX drug linked to PEG chain via 
disulfide linkage (Figure 5). The resulting H-shaped prodrug showed 
high drug-carrying capability (up to 26 wt%) and redox sensitive drug 
release mechanism. The prodrug self-assembled into NPs bearing a 
MTX core and exhibited faster drug release rate when exposed to 10 
mM DTT. Cell proliferation assays performed with HepG2 cancer cells 
further demonstrated the pharmacological efficacy of MTX released 
from prodrug in the presence of elevated GSH. 

We also covalently attached camptothecin (CPT) onto PEG chain 
with a disulfide linkage (CPT-SS-PEG-SS-CPT) [53]. There was a rapid 
release rate of 4% per hour during the first 10 h in the presence of 10 
mM DTT. Cell proliferation assays further revealed that the prodrugs 
effectively decreased HepG2 cell viability, thus demonstrating CPT 
successfully released from prodrugs engineered with redox sensitive 
mechanisms. Consequently, the novel prodrug design with disulfide 
linkage showed great promising in both delivering anti-cancer drugs 
to desired tumor sites and releasing its cargo in a redox-dependent 
manner.

It is reported that GSH is abundant in mammalian cells, particularly 
in drug resistant cells [71-73]. Thus, the redox responsive prodrug was 
also developed to overcome multidrug resistance (MDR). Liu et al. 

 

Figure 3: Chemical structure of disulfide-bridged mPEG-SS-PLL block 
copolymer and schematic illustration of redox-responsive complexes for 
intracellular DNA delivery [66]. Reprinted with permission from Ref. 66. 
Copyright 2011 The Royal Society of Chemistry.

 

Figure 4: Illustration of redox sensitive PCL-SS-PDMA micelles for intracellular 
DOX and DNA delivery [67]. Reprinted with permission from Ref. 67. Copyright 
2014 The Royal Society of Chemistry.

[74] developed redox sensitive DOX prodrug (DEX-PEI(-SS-DOX)) 
by conjugating DOX to DEX-PEI polymers via disulfide linkers. The 
prodrug self-assembled into micelles with an average size of 100-140 
nm and exhibited rapid drug release under 10 mM DTT. Minimal 
amount of DOX (<5%) was released in the absence of DTT within 
48 h, while about 50% DOX was released within 4 h in 10 mM DTT. 
Furthermore, the redox responsive prodrug micelles enhanced the 
DOX cellular accumulation and achieved endosomal escape in human 
breast carcinoma multidrug resistan (MCF-7/ADR) cells which could 
significantly increase the efficiency in overcoming MDR compared to 
free DOX. These results indicate that redox-sensitive prodrug micelles 
exhibit promising advantages in overcoming MDR in cancer cells as 
well as improving overall therapeutic efficiency of anticancer drugs.

Redox sensitive graphene oxide

Graphene and its derivative graphene oxide (GO) have shown 
important potential in biological applications owing to their unique 
physical and chemical properties [75]. In particular, graphene oxide 
(GO) has shown several advantages especially in drug or gene delivery 
system [12]. First, due to its large surface area, GO is quite suitable as a 
loading carrier for various molecules, such as drug and gene, imaging 
agents [76]. Second, there are some reactive functional groups on its 
basal plane and edges, such as hydroxyl, epoxide and carboxylic acid, 
which could be modified or conjugated with polymers to improve 
its solubility and biocompatibility [77]. Inspired by these important 
features, numerous reports on GO-based drug or gene delivery have 
been documented [78,79]. In particular, redox sensitive GO have 
received great interesting.

Our group developed redox sensitive GO (NGO-SS-mPEG) for 
tumor selective drug delivery (Figure 6) [34]. The PEG attached on GO 
sheet via a disulfide linkage and improved the GO stability in blood 
circulation, while PEG shell detached in reductive environment due 
to the cleavage of the disulfide linkage, followed by rapid drug (DXR) 
release. Cell proliferation assays performed with HeLa cells demonstrated 
the pharmacological efficacy of drug released from NGO-SS-mPEG in 
high intracellular GSH concentrations. Consistent with the result of 
cell proliferation assays, confocal laser scanning microscopy (CLSM) 
results and flow cytomertic analyses further confirmed the enhanced 

 

Figure 5: Predicted antitumor activity of redox-sensitive NPs based on 
H-shaped MTX-SS-PEG-SS-MTX conjugates [52]. Reprinted with permission 
from Ref. 52. Copyright 2014 The Royal Society of Chemistry.
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DXR release in GSH-OEt pretreated HeLa cells, which associated with 
the detachment of the PEG shell in reductive environment. Thus, GO 
composites engineered with GSH-triggered drug release mechanism 
are able to preferentially deliver encapsulated drug to targeted tumor sites.

GO is not only exploited as a drug carrier, but also a highly efficient 
energy quencher. Cho et al. [58]. Developed a GO-photosensitizer 
conjugate (GO-SS-Ce6), in which the photodynamic efficacy of 
chlorine6 (Ce6) was activated by intracellular GSH. Specifically, Ce6 
was conjugated on GO via disulfide linker, and was non-fluorescent 
and non-phototoxic even upon light irradiation. However, GO-SS-Ce6 
exhibited highly fluorescent and phototoxic in A549 cells due to the 
high GSH triggered cleavage of disulfide bonds, followed by the large 
amount release of Ce6 from the GO complex. Flow cytometry analysis 
further confirmed these results. The samples incubating with GO-SS-
Ce6 showed a remarkably improved fluorescence intensity as compared 
to that of free Ce6 treated A549 cells. Moreover, cell proliferation assays 
performed with A549 cells demonstrated the photodynamic efficacy 
of Ce6 released from GO complexes upon light irradiation in high 
intracellular GSH concentrations. Notably, these significant findings 
imply that the GSH responsive GO complex can be a highly efficient 
and novel approach for photosensitizer delivery.

Redox sensitive silica-based NPs 

Stimulus controlled mesoporous silica for drug or gene delivery is 
an attractive field, especially since MCM-41 type of mesoporous silica 
NPs (MSNs) has been proved to be biocompatible [80-82]. Large surface 
area and ordered mesoporous structure of MSNs is ideal for loading 
cargo molecules, whereas the functionalization of MSNs surface offers 
a way to achieve controlled release of loaded molecules [83]. 

Feng et al. [84] grafted poly(N-acryloxysuccinimide) (PNAS) on 
the surface of MSNs, followed by cross-linking with cystamine as a 
“gatekeeper”, which could be triggered by redox stimuli for controlled 
guest molecular delivery in a “switch on/ off ” process (Figure 7). 
The release profile was dependent on the DTT concentration. The 
loaded rhodamine B was rapidly released in the presence of a high 
concentration of DTT (21.6 mM), while a relatively slow delivery at a 
low DTT concentration (0.216 mM). The loaded rhodamine B released 
from the MSNs was due to the cleavage of the disulfide linkage on 
the pore entrance of MSNs in the high reducing DTT environment. 
In a following study, the authors developed β-CD-PNAS as the multi-
responsive “gatekeeper” of MSNs linked by disulfide bonds [85]. The 
release profiles exhibited that instantaneous release of loaded calcein 
was observed in stimuli of adding UV, DTT or α-CD environment, 

while without external stimuli, release behavior was not obviously 
observed. 

Our group engineered PEG surface-capped MSNs (MSNs-SS-
mPEG) nanosystem for redox triggered release of fluorescein dye [62]. 
The PEG shell was anchored on the pore entrance of MSNs via disulfide 
linker, thus served as gatekeeper to control the on-off behavior of the 
pores for release of loaded dye. The release behavior investigation 
demonstrated that the MSNs-SS-mPEG showed a rapid release in the 
presence of 10 mM GSH as compared to 0 mM GSH, indicating the 
accelerated cargo release after the opening of the pores regulated by 
GSH. CLSM further confirmed the MSNs-SS-mPEG NPs successfully 
endocytosised into MCF-7 cells and released guest dyes in high 
intracellular GSH levels. 

Kataoka’s group designed a smart multilayer assembly (SMA) based 
on silica for siRNA delivery [86]. The SMA was about 160 nm in size and 
was designed in four layers: a polyion complex core for siRNA-loading, 
a dissolvable silica interlayer for transient core-stabilizing, a polycation 
interlayer for endosome disrupting, and a detachable PEG shell with 
redox-sensitivity (Figure 8). The outer PEG shell was connected with 
PAsp(DET) via disulfide bond (PEG-SS-PAsp(DET)), which could 
detach from the SMA via the cleavage of disulfide by reducing agents 
in the endosome/lysosome, followed by the exposure of the PAsp(DET) 
interlayer for endosome-disrupting. The silica interlayer offered the 
SMA highly tolerant to dissociation induced by anionic lipids, while 
siRNA release from the SMA in 24 h was clearly observed. In contrast 
with nondisuflide control system, the siRNA released from the SMA 
within the endosome was significantly lower, suggesting the improved 
endosomal escape of SMA due to the PEG detachment. Moreover, SMA 
induced apparent higher gene silencing efficiency in mice tumor tissue 
without problematic hematological toxicity. 

Conclusions and Perspectives 
We have reviewed a number of current designs about redox 

sensitive NPs especially those containing disulfide bond (-S-S-) linked 
PEG shell for intracellular drug delivery. The design and development 
of these redox sensitive NPs linked with disulfide bond for efficiently 
drug delivery and release represent an alternative of smart approach 
toward other stimuli sensitive NPs. As evidenced by the presentation of 
lots of recent designs and studies cited in this review, GSH stimuli have 
been well-recognized as an ideal internal signal for triggering rapid 

 

Figure 6: Predicted antitumor activity of redox-sensitive NGO-SS-mPEG [34]. 
Reprinted with permission from Ref. 34. Copyright 2012 John Wiley & Sons.

Figure 7: Illustration of redox sensitive PNAS-MSNs for guest molecular 
delivery [84]. Reprinted with permission from Ref. 86. Copyright 2012 
American Chemical Society.
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destabilization of NPs structures in reductive environment analog to 
tumor intracellular environment, which will release drug rapidly inside 
cells and significantly enhance drug efficacy. Moreover, the past several 
years have seen rapid progress in the design of various redox sensitive 
NPs for overcoming the biological barriers in drug or gene delivery 
which can uniquely resolve the stability dilemma of NPs. In this review, 
the design of sheddable NPs sensitive to intracellular reductive tumor 
conditions may represent an attractive strategy for intracellular drug 
and gene delivery. 

However, a vast variety of redox sensitive NPs have been reported, 
only a small number of them has been tested in preclinical, in vivo 
models. It should further be noted that lot of the coating polymers are 
not biodegradable or biocompatible, which are not suitable for drug or 
gene delivery in clinical use. Thus, more efforts need to promote studies 
in the reasonable design of redox sensitive NPs. 

As we have reviewed, both the understanding of biological barrier 
and the merits of intracellular drug or gene delivery led to the successful 
design of redox sensitive NPs. Looking to the future, we expect that our 
review will further aid researchers in developing NPs that are capable 
of reaching the clinical setting. 
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the layer-by-layer method for siRNA delivery [86]. Reprinted with permission 
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