Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T22:17:34.569Z Has data issue: false hasContentIssue false

Second-order estimates for collapsed limits of Ricci-flat Kähler metrics

Published online by Cambridge University Press:  05 January 2023

Kyle Broder*
Affiliation:
School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD 4067, Australia

Abstract

We show that the singularities of the twisted Kähler–Einstein metric arising as the longtime solution of the Kähler–Ricci flow or in the collapsed limit of Ricci-flat Kähler metrics are intimately related to the holomorphic sectional curvature of reference conical geometry. This provides an alternative proof of the second-order estimate obtained by Gross, Tosatti, and Zhang (2020, Preprint, arXiv:1911.07315) with explicit constants appearing in the divisorial pole.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was partially supported by an Australian Government Research Training Program (RTP) Scholarship and funding from the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (project DP220102530).

References

Broder, K., Twisted Kähler–Einstein metrics and collapsing. Preprint, 2021. arXiv:2003.14009 Google Scholar
Broder, K., The Schwarz lemma in Kähler and non-Kähler geometry. Preprint, 2022. arXiv:2109.06331, to appear in Asian J. Math.CrossRefGoogle Scholar
Broder, K., The Schwarz lemma: an Odyssey. Rocky Mountain J. Math. 52(2022), no. 4, 11411155.Google Scholar
Broder, K., Complex manifolds of hyperbolic and non-hyperbolic-type. Ph.D. thesis, Australian National University, Beijing International Center for Mathematics Research, 2022.Google Scholar
Cao, H. D., Deformations of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds . Invent. Math. 81(1985), no. 2, 359372.CrossRefGoogle Scholar
Demailly, J.-P., Regularization of closed positive currents and intersection theory . J. Algebraic Geom. 1(1992), no. 3, 361409.Google Scholar
Demailly, J.-P., Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials . In: Algebraic geometry—Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, 62, American Mathematical Society, Providence, RI, 1997, pp. 285360.CrossRefGoogle Scholar
Diverio, S., Kobayashi hyperbolicity, negativity of the curvature and positivity of the canonical bundle. Preprint, 2022. arXiv:2011.11379, to appear in a forthcoming monograph of the SMF in the series “Panoramas et Synthèses.”Google Scholar
Eyssidieux, P., Guedj, V., and Zeriahi, A., Singular Kähler–Einstein metrics . J. Amer. Math. Soc. 22(2009), 607639.CrossRefGoogle Scholar
Fong, F. T.-Z. and Lee, M.-C., Higher-order estimates of long-time solutions to the Kähler–Ricci flow. Preprint, 2020. arXiv:2001.11555 CrossRefGoogle Scholar
Grauert, H. and Remmert, R., Plurisubharmonische Funktionen in komplexen Räumen . Math. Z. 65(1956), 175194.CrossRefGoogle Scholar
Gross, M., Tosatti, V., and Zhang, Y., Collapsing of abelian fibered Calabi–Yau manifolds . Duke Math. J. 162(2013), no. 3, 517551.CrossRefGoogle Scholar
Gross, M., Tosatti, V., and Zhang, Y., Gromov–Hausdorff collapsing of Calabi–Yau manifolds . Comm. Anal. Geom. 24(2016), no. 1, 93113.CrossRefGoogle Scholar
Gross, M., Tosatti, V., and Zhang, Y., Geometry of twisted Kähler–Einstein metrics and collapsing . Comm. Anal. Geom. 380(2020), 14011438.Google Scholar
Gross, M. and Wilson, P. M. H., Large complex structure limits of K3 surfaces . J. Differential Geom. 55(2000), no. 3, 475546.CrossRefGoogle Scholar
Guenancia, H. and Paun, M., Conic singularities metrics with prescribed Ricci curvature: general cone angles along simple normal crossing divisors . J. Differential Geom. 103(2016), no. 1, 1557.CrossRefGoogle Scholar
Hein, H. J. and Tosatti, V., Remarks on the collapsing of torus fibered Calabi–Yau manifolds . Bull. Lond. Math. Soc. 47(2015), no. 6, 10211027.Google Scholar
Hein, H. J. and Tosatti, V., Higher-order estimates for collapsing Calabi–Yau metrics. Preprint, 2020. arXiv:1803.06697 CrossRefGoogle Scholar
Jeffres, T., Mazzeo, R., and Rubinstein, Y. A., Kähler–Einstein metrics with edge singularities . Ann. of Math. (2) 183(2016), no. 1, 95176.CrossRefGoogle Scholar
Lee, M. C. and Streets, J., Complex manifolds with negative curvature operator . Int. Math. Res. Not. IMRN 2021(2021), 1852018528.CrossRefGoogle Scholar
Li, Y. and Tosatti, V., On the collapsing of Calabi–Yau manifolds and Kähler–Ricci flows. Preprint, 2021. arXiv:2107.00836 Google Scholar
Lin, A. and Shen, L., Conic Kähler–Einstein metrics along normal crossing divisors on Fano manifolds . J. Funct. Anal. 275(2018), no. 2, pp. 300328.CrossRefGoogle Scholar
Lu, Y.-C., Holomorphic mappings of complex manifolds . J. Differential Geom. 2(1968), 299312.CrossRefGoogle Scholar
Moishezon, B. G., Singular Kählerian spaces . In: Manifolds—Tokyo 1973 (proceedings of the international conference on manifolds and related topics in topology, Tokyo, 1973), University of Tokyo Press, Tokyo, 1975, pp. 343351.Google Scholar
Royden, H. L., Ahlfors–Schwarz lemma in several complex variables . Comment. Math. Helv. 55(1980), no. 4, 547558.CrossRefGoogle Scholar
Rubinstein, Y., Smooth and singular Kähler–Einstein metrics . In: Geometric and spectral analysis, Contemporary Mathematics: Centre de Recherches Mathématiques Proceedings, 630, American Mathematical Society, Providence, RI, 2014, pp. 45138.Google Scholar
Song, J., Riemannian geometry of Kähler–Einstein currents. Preprint, 2014. arXiv:1404.0445 Google Scholar
Song, J. and Tian, G., The Kähler–Ricci flow on surfaces of positive Kodaira dimension . Invent. Math. 170 (2007), no. 3, 609653.CrossRefGoogle Scholar
Song, J. and Tian, G., Canonical measures and Kähler–Ricci flow . J. Amer. Math. Soc. 25 (2012), no. 2, 303353.CrossRefGoogle Scholar
Song, J., Tian, G., and Zhang, Z., Collapsing behavior of Ricci-flat Kähler metrics and long time solutions of the Kähler–Ricci flow. Preprint, 2019. arXiv:1904.08345 Google Scholar
Tian, G., Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric . In: Mathematical aspects of string theory (San Diego, CA, 1986), Advanced Series in Mathematical Physics, vol. 1, World Science Publishing, Singapore, 1987, pp. 629646.CrossRefGoogle Scholar
Tian, G. and Zhang, Z., On the Kähler–Ricci flow on projective manifolds of general type . Chinese Ann. Math. Ser. B 27(2006), no. 2, 179192.CrossRefGoogle Scholar
Tian, G. and Zhang, Z., Relative volume comparison of Ricci flow and its applications. Preprint, 2018. arXiv:1802.09506 Google Scholar
Tosatti, V., Limits of Calabi–Yau metrics when the Kähler class degenerates . J. Eur. Math. Soc. (JEMS) 11(2009), no. 4, 755776.CrossRefGoogle Scholar
Tosatti, V., Adiabatic limits of Ricci-flat Kähler metrics . J. Differential Geom. 84(2010), no. 2, 427453.CrossRefGoogle Scholar
Tosatti, V., Degenerations of Calabi–Yau metrics . Acta Phys. Pol. B Proc. Suppl. 4(2011), 495.CrossRefGoogle Scholar
Tosatti, V., Calabi–Yau manifolds and their degenerations . Ann. N. Y. Acad. Sci. 1260(2012), 813.CrossRefGoogle Scholar
Tosatti, V., Weinkove, B., and Yang, X., The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits . Amer. J. Math. 140 (2018), no. 3, 653698.CrossRefGoogle Scholar
Tosatti, V. and Zhang, Y., Triviality of fibered Calabi–Yau manifolds without singular fibers . Math. Res. Lett. 21(2014), no. 4, 905918.CrossRefGoogle Scholar
Tosatti, V. and Zhang, Y., Infinite time singularities of the Kähler–Ricci flow . Geom. Topol. 19(2015), no. 5, 29252948.CrossRefGoogle Scholar
Tosatti, V. and Zhang, Y., Collapsing hyperkähler manifolds . Ann. Sci. Éc. Norm. Supér. 53(2020), no. 3, 751786.CrossRefGoogle Scholar
Tsuji, H., Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type . Math. Ann. 281(1988), no. 1, 123133.CrossRefGoogle Scholar
Yang, X., RC-positivity, rational connectedness and Yau’s conjecture . Camb. J. Math. 6(2018), no. 2, 183212.CrossRefGoogle Scholar
Yang, X. and Zheng, F., On real bisectional curvature for Hermitian manifolds . Trans. Amer. Math. Soc. 371(2019), no. 4, 27032718.CrossRefGoogle Scholar