CC BY-NC-ND 4.0 · World J Nucl Med 2020; 19(02): 124-130
DOI: 10.4103/wjnm.WJNM_48_19
Original Article

18F-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis of suspected paraneoplastic syndromes: A retrospective analysis

Richard Bresler
Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
,
Harry William III Schroeder
1   Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, GA
,
David Z. Chow
2   Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
,
Ruth Lim
2   Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
› Author Affiliations

Abstract

Paraneoplastic syndromes are a rare clinical presentation of tumor thought to affect 0.01% of patients with cancer. Paraneoplastic syndromes present a diagnostic challenge as a wide variety of signs and symptoms may appear. This study examines the use of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) as a diagnostic imaging tool for detecting tumor in suspected paraneoplastic syndrome cases. This single-center retrospective study included patients with suspected paraneoplastic syndrome who underwent whole-body 18F-FDG PET/CT scan between December 2005 and December 2016. Associated clinical data were gathered via electronic chart review. Patient records were reviewed for age, sex, clinical signs and symptoms, ancillary diagnostic procedures, date of diagnosis, and follow-up time. Ninety-nine patients met inclusion criteria for this study. Mean follow-up period was 1.8 years. Cancer prevalence was 12.1%. The 18F-FDG PET/CT results are as follows: 10 true positives, 5 false positives, 82 true negatives, and 2 false negatives. The diagnostic values are as follows: sensitivity 83.3%, specificity 94.3%, positive predictive value 66.7%, and negative predictive value (NPV) 97.6%. The high NPV in our study supports the effectiveness of 18F-FDG PET/CT to rule out tumor in suspected paraneoplastic syndrome. Future research aims to analyze which patients with suspected paraneoplastic syndrome would benefit most from 18F-FDG PET/CT.

Financial support and sponsorship

Nil.




Publication History

Received: 23 June 2019

Accepted: 04 September 2019

Article published online:
19 April 2022

© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med 2003;349:1543-54.
  • 2 Dalmau J, Graus F, Rosenblum MK, Posner JB. Anti-hu – Associated paraneoplastic encephalomyelitis/sensory neuronopathy. A clinical study of 71 patients. Medicine (Baltimore) 1992;71:59-72.
  • 3 Nuclear Medicine Section, International Atomic Energy Agency (IAEA) (2008) Guide to Clinical PET in Oncology: Improving Clinical Management of Cancer Patients. IAEA-TECDOC-1605. Vienna, Austria: IAEA.
  • 4 Lee KH, Chung JK. 18F-FDG Positron Emission Tomography in the Evaluation of Infectious and Inflammatory Diseases. New York: Springer; 2012. p. 325-43.
  • 5 Titulaer MJ, Soffietti R, Dalmau J, Gilhus NE, Giometto B, Graus F, et al. Screening for tumours in paraneoplastic syndromes: Report of an EFNS task force. Eur J Neurol 2011;18:19-e3.
  • 6 Graus F, Delattre JY, Antoine JC, Dalmau J, Giometto B, Grisold W, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 2004;75:1135-40.
  • 7 Kristensen SB, Hess S, Petersen H, Høilund-Carlsen PF. Clinical value of FDG-PET/CT in suspected paraneoplastic syndromes: A retrospective analysis of 137 patients. Eur J Nucl Med Mol Imaging 2015;42:2056-63.
  • 8 Vaidyanathan S, Pennington C, Ng CY, Poon FW, Han S. 18F-FDG PET-CT in the evaluation of paraneoplastic syndromes: Experience at a regional oncology centre. Nucl Med Commun 2012;33:872-80.
  • 9 Selva-O'Callaghan A, Grau JM, Gámez-Cenzano C, Vidaller-Palacín A, Martínez-Gómez X, Trallero-Araguás E, et al. Conventional cancer screening versus PET/CT in dermatomyositis/polymyositis. Am J Med 2010;123:558-62.
  • 10 McKeon A, Apiwattanakul M, Lachance DH, Lennon VA, Mandrekar JN, Boeve BF, et al. Positron emission tomography-computed tomography in paraneoplastic neurologic disorders: Systematic analysis and review. Arch Neurol 2010;67:322-9.
  • 11 Bannas P, Weber C, Derlin T, Lambert J, Leypoldt F, Adam G, et al. 18F-FDG-PET/CT in the diagnosis of paraneoplastic neurological syndromes: A retrospective analysis. Eur Radiol 2010;20:923-30.
  • 12 Schramm N, Rominger A, Schmidt C, Morelli JN, Schmid-Tannwald C, Meinel FG, et al. Detection of underlying malignancy in patients with paraneoplastic neurological syndromes: Comparison of 18F-FDG PET/CT and contrast-enhanced CT. Eur J Nucl Med Mol Imaging 2013;40:1014-24.
  • 13 Lebech AM, Gaardsting A, Loft A, Graff J, Markova E, Bertelsen AK, et al. Whole-body 18F-FDG PET/CT is superior to CT asfirst-line diagnostic imaging in patients referred with serious nonspecific symptoms or signs of cancer: A randomized prospective study of 200 patients. J Nucl Med 2017;58:1058-64.
  • 14 Sheikhbahaei S, Marcus CV, Fragomeni RS, Rowe SP, Javadi MS, Solnes LB. Whole-body 18F-FDG PET and 18F-FDG PET/CT in patients with suspected paraneoplastic syndrome: A systematic review and meta-analysis of diagnostic accuracy. J Nucl Med 2017;58:1031-6.
  • 15 García Vicente AM, Delgado-Bolton RC, Amo-Salas M, López-Fidalgo J, Caresia Aróztegui AP, García Garzón JR, et al. 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of malignancy in patients with paraneoplastic neurological syndrome: A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2017;44:1575-87.
  • 16 Iyer VR, Lee SI. MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol 2010;194:311-21.
  • 17 Bouchelouche K, Oehr P. Recent developments in urologic oncology: Positron emission tomography molecular imaging. Curr Opin Oncol 2008;20:321-6.
  • 18 Park JW, Kim JH, Kim SK, Kang KW, Park KW, Choi JI, et al. Aprospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 2008;49:1912-21.
  • 19 Cheran SK, Nielsen ND, Patz EF Jr. False-negative findings for primary lung tumors on FDG positron emission tomography: Staging and prognostic implications. AJR Am J Roentgenol 2004;182:1129-32.
  • 20 Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: Physiologic uptake, normal variants, and benign conditions. Radiographics 2009;29:1467-86.
  • 21 Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology 1998;50:652-7.