CC BY-NC-ND 4.0 · Asian J Neurosurg 2020; 15(04): 863-869
DOI: 10.4103/ajns.AJNS_289_20
Original Article

High-flow bypass with radial artery graft for cavernous carotid aneurysms: A case series

Riki Tanaka
Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya
,
Boon Liew
Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya
,
Kento Sasaki
Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya
,
Kyosuke Miyatani
Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya
,
Tsukasa Kawase
Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya
,
Yasuhiro Yamada
Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya
,
Yoko Kato
Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya
,
Akihiko Horiguchi
1   Department of Gastroenterological Surgery, Fujita Health University School of Medicine, Bantane Hospital, Nagoya
› Author Affiliations

Background: The incidence of cavernous carotid aneurysms (CCAs) of intracranial aneurysms is low. Majority of cases presented as incidental findings with benign natural progression. The most common presenting symptoms are multiple cranial neuropathies among symptomatic patients. The treatment modalities for symptomatic patients include direct surgical clipping, endovascular coil embolization, or placement of flow diverter, or indirect procedures such as occlusion of parent artery with and without revascularization techniques. The advancement in the microsurgical treatments and endovascular devices have enable a high success rate in the treatment of patients with CCAs with low morbidity and mortality rates. Objective: To study the surgical outcomes of patients with cavernous aneurysm who underwent high-flow bypass between 2015 and 2020 in our institution. Materials and Methods: A total of six patients in a single institution presented with CCAs who were treated with high-flow bypass surgery were included in this case-series. A single-case illustration was presented focusing on the details of surgical case management of CCA. The intraoperative middle cerebral artery (MCA) pressure monitoring during bypass surgery was also described. Results: All five female patients and one male patient who were diagnosed with cavernous carotid aneurysms were studied. The mean age was 68.8 years old (range: 24-84 years old) and the mean size of the aneurysm was 19.6mm (range: 9.7 – 30mm). There were successfully treated with high flow bypasses using radial artery graft without any neurological sequelae. Conclusion: The surgical treatments of cavernous carotid aneurysms should be limited to experienced neurosurgeons in view of significant risk of morbidity and mortality. Endovascular procedures may be the main stay of treatments. The success shown in this case series with parent artery occlusion and bypass surgery may provide an safe alternative to the endovascular treatment.

Financial support and sponsorship

Nil.




Publication History

Received: 12 June 2020

Accepted: 29 July 2020

Article published online:
16 August 2022

© 2020. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Sudhoff H, Stark T, Knorz S, Luckhaupt H, Borkowski G. Massive epistaxis after rupture of intracavernous carotid artery aneurysm. Case report. Ann Otol Rhinol Laryngol 2000;109:776-8.
  • 2 Surdell DL, Hage ZA, Eddleman CS, Gupta DK, Bendok BR, Batjer HH. Revascularization for complex intracranial aneurysms. Neurosurg Focus 2008;24:E21.
  • 3 Uozumi Y, Okamoto S, Araki Y, Izumi T, Matsubara N, Yokoyama K, et al. Treatment of symptomatic bilateral cavernous carotid aneurysms: Long-term results of 6 cases. J Stroke Cerebrovasc Dis 2015;24:1013-8.
  • 4 Miyatani K, Korde P, Yamada Y, Kawase T, Takizawa K, Kato Y. Atypical symptomatic bilateral spontaneous cavernous carotid aneurysm with systemic vessel wall pathology in young female: A rare case report. Asian J Neurosurg 2019;14:1245-8.
  • 5 Bendok BR, Batjer HH. Cavernous carotid aneurysms: To treat or not to treat? Neurosurg Focus 2009;26:E4.
  • 6 Vasconcellos LP, Flores JA, Veiga JC, Conti ML, Shiozawa P. Presentation and treatment of carotid cavernous aneurysms. Arq Neuropsiquiatr 2008;66:189-93.
  • 7 Wiebers DO, Whisnant JP, Huston J III, Meissner I, Brown RD Jr., Piepgras DG, et al. Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003;362:103-10.
  • 8 Kumar A, Kutty RK, Yamada Y, Tanaka R, Ravisankar V, Musara A, et al. A retrospective analysis of treatment outcomes of 40 incidental cavernous carotid aneurysms. World Neurosurg 2019;130:e1034-40.
  • 9 Yasargil GM. Anastomosis between the superficial temporal artery and a branch of the middle cerebral artery. In: Microsurgery Applied to Neuro-surgery. Stuttgart: Georg Thieme; 1969. p. 105-15.
  • 10 Sia SF, Morgan MK. High flow extracranial-to-intracranial brain bypass surgery. J Clin Neurosci 2013;20:1-5.
  • 11 Ono H, Inoue T, Tanishima T, Tamura A, Saito I, Saito N. High-flow bypass with radial artery graft followed by internal carotid artery ligation for large or giant aneurysms of cavernous or cervical portion: Clinical results and cognitive performance. Neurosurg Rev 2018;41:655-65.
  • 12 Kim LJ, Tariq F, Levitt M, Barber J, Ghodke B, Hallam DK, et al. Multimodality treatment of complex unruptured cavernous and paraclinoid aneurysms. Neurosurgery 2014;74:51-61.
  • 13 Kai Y, Hamada J, Mizuno T, Todaka T, Morioka M, Ushio Y. Treatment for giant aneurysms in the cavernous portion of the internal carotid artery using detachable coils. Interv Neuroradiol 2000;6 Suppl 1:103-6.
  • 14 Dolenc VV. Extradural approach to intracavernous ICA aneurysms. Acta Neurochir Suppl (Wien) 1999;72:99-106.
  • 15 Jin SC, Kwon DH, Song Y, Kim HJ, Ahn JS, Kwun BD. Multimodal treatment for complex intracranial aneurysms: Clinical research. J Korean Neurosurg Soc 2008;44:314-9.
  • 16 Matmusaev M, Duschanov T, Yamada Y, Takizawa K, Kawase T, Tanaka R, et al. High flow bypass for cavernous carotid aneurysms. Rom Neurosurg 2018;32:262-71.
  • 17 Gobble RM, Hoang H, Jafar J, Adelman M. Extracranial-intracranial bypass: Resurrection of a nearly extinct operation. J Vasc Surg 2012;56:1303-7.
  • 18 Murai Y, Mizunari T, Umeoka K, Tateyama K, Kobayashi S, Teramoto A. Radial artery grafts for symptomatic cavernous carotid aneurysms in elderly patients. Neurol India 2011;59:537-41.
  • 19 Menon G, Jayanand S, Krishnakumar K, Nair S. EC-IC bypass for cavernous carotid aneurysms: An initial experience with twelve patients. Asian J Neurosurg 2014;9:82-8.
  • 20 Nakagawa S, Murai Y, Wada T, Tateyama K. 4D flow preliminary investigation of a direct carotid cavernous fistula due to a ruptured intracavernous aneurysm. BMJ Case Rep 2015;2015: bcr2014206084.
  • 21 Sriamornrattanakul K, Sakarunchai I, Yamashiro K, Yamada Y, Suyama D, Kawase T, et al. Surgical treatment of large and giant cavernous carotid aneurysms. Asian J Neurosurg 2017;12:382-8.
  • 22 Uchida T, Yoshino M, Ito S, Hara T. Anastomotic aneurysm formation after high flow bypass surgery: A case report with histopathological study. NMC Case Rep J 2017;4:111-3.