CC BY-NC-ND 4.0 · Asian J Neurosurg 2019; 14(01): 181-187
DOI: 10.4103/ajns.AJNS_156_18
Original Article

Clinical, functional, and radiologic outcome of single- and double-level transforaminal lumbar interbody fusion in patients with low-grade spondylolisthesis

Keyvan Eghbal
Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz
,
Babak Pourabbas
1   Department of Orthopedics, Shiraz University of Medical Sciences, Shiraz
,
Hamid Abdollahpour
1   Department of Orthopedics, Shiraz University of Medical Sciences, Shiraz
,
Reza Mousavi
Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz
› Author Affiliations

Objective: The main objective is to determine the functional, clinical, and radiological outcome of patients with low-grade spondylolisthesis undergoing single- or double-level transforaminal lumbar interbody fusion (TLIF). Materials and Methods: This quasi-interventional study was conducted during a 2-year period from 2016 to 2018 in Shiraz, Southern Iran. We included all the adult (≥18 years) patients with low-grade spondylolisthesis (Meyerding Grade I and II) who underwent single- or double-level TLIF in our center. The spinopelvic parameters including pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), and segmental LL (SLL) were measured. The pain intensity and disability were measured utilizing the visual analog scale (VAS) for back and leg pain and Oswestry Disability Index (ODI), respectively, after 1 year. Results: Overall, we included a total number of 50 patients with mean age of 54.1 ± 10.48 years. After the surgery, the PI (P = 0.432), PT (P = 0.782), and SS (P = 0.466) were not found to be statistically changed from the baseline. However, we found that single- or double-level TLIF was associated with increased LL (P < 0.001) and SLL (P < 0.001). Regarding the clinical outcome measures, both back (P = 0.001) and leg (P < 0.001) VAS improved after the surgery significantly. In addition, we found that improved leg VAS was positively correlated with improved ODI (r = 0. 634; P < 0.001). Conclusion: Single- or double-level TLIF is associated with increased global and SLL along with improved leg and back pain and disability in patients with low-grade spondylolisthesis. Interestingly, improved leg pain is correlated to improved disability in these patients.

Financial support and sponsorship

Nil.




Publication History

Article published online:
09 September 2022

© 2019. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Jacobsen S, Sonne-Holm S, Rovsing H, Monrad H, Gebuhr P. Degenerative lumbar spondylolisthesis: An epidemiological perspective: The copenhagen osteoarthritis study. Spine (Phila Pa 1976) 2007;32:120-5.
  • 2 Wang YX, Káplár Z, Deng M, Leung JC. Lumbar degenerative spondylolisthesis epidemiology: A systematic review with a focus on gender-specific and age-specific prevalence. J Orthop Translat 2017;11:39-52.
  • 3 He LC, Wang YX, Gong JS, Griffith JF, Zeng XJ, Kwok AW, et al. Prevalence and risk factors of lumbar spondylolisthesis in elderly Chinese men and women. Eur Radiol 2014;24:441-8.
  • 4 Toueg CW, Mac-Thiong JM, Grimard G, Poitras B, Parent S, Labelle H, et al. Spondylolisthesis, sacro-pelvic morphology, and orientation in young gymnasts. J Spinal Disord Tech 2015;28:E358-64.
  • 5 Farrokhi MR, Ghaffarpasand F, Khani M, Gholami M. An evidence-based stepwise surgical approach to cervical spondylotic myelopathy: A narrative review of the current literature. World Neurosurg 2016;94:97-110.
  • 6 Labelle H, Roussouly P, Berthonnaud E, Dimnet J, O'Brien M. The importance of spino-pelvic balance in L5-s1 developmental spondylolisthesis: A review of pertinent radiologic measurements. Spine (Phila Pa 1976) 2005;30:S27-34.
  • 7 Faraj SS, De Kleuver M, Vila-Casademunt A, Holewijn RM, Obeid I, Acaroǧlu E, et al. Sagittal radiographic parameters demonstrate weak correlations with pretreatment patient-reported health-related quality of life measures in symptomatic de novo degenerative lumbar scoliosis: A European multicenter analysis. J Neurosurg Spine 2018;28:573-80.
  • 8 Gussous Y, Theologis AA, Demb JB, Tangtiphaiboontana J, Berven S. Correlation between lumbopelvic and sagittal parameters and health-related quality of life in adults with lumbosacral spondylolisthesis. Global Spine J 2018;8:17-24.
  • 9 Ferrero E, Ould-Slimane M, Gille O, Guigui P; French Spine Society (SFCR). Sagittal spinopelvic alignment in 654 degenerative spondylolisthesis. Eur Spine J 2015;24:1219-27.
  • 10 Anderson DG, Limthongkul W, Sayadipour A, Kepler CK, Harrop JS, Maltenfort M, et al. A radiographic analysis of degenerative spondylolisthesis at the L4-5 level. J Neurosurg Spine 2012;16:130-4.
  • 11 Kepler CK, Hilibrand AS, Sayadipour A, Koerner JD, Rihn JA, Radcliff KE, et al. Clinical and radiographic degenerative spondylolisthesis (CARDS) classification. Spine J 2015;15:1804-11.
  • 12 Price JP, Dawson JM, Schwender JD, Schellhas KP. Clinical and radiologic comparison of minimally invasive surgery with traditional open transforaminal lumbar interbody fusion: A review of 452 patients from a single center. Clin Spine Surg 2018;31:E121-6.
  • 13 Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech 2011;24:479-84.
  • 14 Chen X, Xu L, Qiu Y, Chen ZH, Zhou QS, Li S, et al. Higher improvement in patient-reported outcomes can be achieved after transforaminal lumbar interbody fusion for clinical and radiographic degenerative spondylolisthesis classification type D degenerative lumbar spondylolisthesis. World Neurosurg 2018;114:e293-300.
  • 15 Cheng X, Zhang F, Zhang K, Sun X, Zhao C, Li H, et al. Effect of single-level transforaminal lumbar interbody fusion on segmental and overall lumbar lordosis in patients with lumbar degenerative disease. World Neurosurg 2018;109:e244-51.
  • 16 Cole CD, McCall TD, Schmidt MH, Dailey AT. Comparison of low back fusion techniques: Transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. Curr Rev Musculoskelet Med 2009;2:118-26.
  • 17 Abdu WA, Sacks OA, Tosteson AN, Zhao W, Tosteson TD, Morgan TS, et al. Long-term results of surgery compared with nonoperative treatment for lumbar degenerative spondylolisthesis in the spine patient outcomes research trial (SPORT). Spine (Phila Pa 1976) 2018. doi: 10.1097/BRS.2499952499952682. [Epub ahead of print].
  • 18 Jagannathan J, Sansur CA, Oskouian RJ Jr., Fu KM, Shaffrey CI. Radiographic restoration of lumbar alignment after transforaminal lumbar interbody fusion. Neurosurgery 2009;64:955-63.
  • 19 Matsumura A, Namikawa T, Kato M, Ozaki T, Hori Y, Hidaka N, et al. Posterior corrective surgery with a multilevel transforaminal lumbar interbody fusion and a rod rotation maneuver for patients with degenerative lumbar kyphoscoliosis. J Neurosurg Spine 2017;26:150-7.
  • 20 Yson SC, Santos ER, Sembrano JN, Polly DW Jr. Segmental lumbar sagittal correction after bilateral transforaminal lumbar interbody fusion. J Neurosurg Spine 2012;17:37-42.
  • 21 Ould-Slimane M, Lenoir T, Dauzac C, Rillardon L, Hoffmann E, Guigui P, et al. Influence of transforaminal lumbar interbody fusion procedures on spinal and pelvic parameters of sagittal balance. Eur Spine J 2012;21:1200-6.
  • 22 Lee DY, Jung TG, Lee SH. Single-level instrumented mini-open transforaminal lumbar interbody fusion in elderly patients. J Neurosurg Spine 2008;9:137-44.
  • 23 Watkins RG 4th, Hanna R, Chang D, Watkins RG 3rd. Sagittal alignment after lumbar interbody fusion: Comparing anterior, lateral, and transforaminal approaches. J Spinal Disord Tech 2014;27:253-6.
  • 24 Hsieh PC, Koski TR, O'Shaughnessy BA, Sugrue P, Salehi S, Ondra S, et al. Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: Implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 2007;7:379-86.
  • 25 Kim SB, Jeon TS, Heo YM, Lee WS, Yi JW, Kim TK, et al. Radiographic results of single level transforaminal lumbar interbody fusion in degenerative lumbar spine disease: Focusing on changes of segmental lordosis in fusion segment. Clin Orthop Surg 2009;1:207-13.
  • 26 Diedrich O, Kraft CN, Bertram R, Wagner U, Schmitt O. Dorsal lumbar interbody implantation of cages for stabilizing segmental spinal instabilities. Z Orthop Ihre Grenzgeb 2000;138:162-8.
  • 27 Liang Y, Shi W, Jiang C, Chen Z, Liu F, Feng Z, et al. Clinical outcomes and sagittal alignment of single-level unilateral instrumented transforaminal lumbar interbody fusion with a 4 to 5-year follow-up. Eur Spine J 2015;24:2560-6.
  • 28 Gödde S, Fritsch E, Dienst M, Kohn D. Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine (Phila Pa 1976) 2003;28:1693-9.
  • 29 Kim JT, Shin MH, Lee HJ, Choi DY. Restoration of lumbopelvic sagittal alignment and its maintenance following transforaminal lumbar interbody fusion (TLIF): Comparison between straight type versus curvilinear type cage. Eur Spine J 2015;24:2588-96.
  • 30 Hunt T, Shen FH, Shaffrey CI, Arlet V. Contralateral radiculopathy after transforaminal lumbar interbody fusion. Eur Spine J 2007;16 Suppl 3:311-4.
  • 31 Iwata T, Miyamoto K, Hioki A, Fushimi K, Ohno T, Shimizu K, et al. Morphologic changes in contralateral lumbar foramen in unilateral cantilever transforaminal lumbar interbody fusion using kidney-type intervertebral spacers. J Spinal Disord Tech 2015;28:E270-6.