Skip to main content

Advertisement

Log in

Outcome of transtibial AperFix system in anterior cruciate ligament injuries

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background: The anterior cruciate ligament (ACL) is one of the major stabilizing factor of the knee that resist anterior translation, valgus and varus forces. ACL is the most commonly ruptured ligament of the knee. The graft fixation to bone is considered to be the weakest link of the reconstruction. According to the parallel forces to the tibial drill hole and the quality of tibial metaphyseal bone is inferior to femoral bone stock, graft fixation to the tibia is more difficult to secure. AperFix system (Cayenne Medical, Inc., Scottsdale, Arizona, USA) which consists femoral and tibial component that includes bioinert polymer polyetheretherketone (PEEK) is one of the new choice for ACL reconstruction surgeryaim of this study was to assess the clinical outcomes and fixation durability of the AperFix (Cayenne Madical, Inc., Scottsdale, Arizona, USA) system and to determine the effect of patient’s age in arthroscopic reconstruction of the anterior cruciate ligament.

Materials and Methods: Patients with symptomatic anterior cruciate ligament rupture underwent arthroscopic reconstruction. Patients were evaluated in terms of range of motion (ROM) values; Lysholm, Cincinati and Tegner activity scales; laxity testing and complications. Femoral tunnel widening was assessed by computertomography scans. Early postoperative and last followup radiographs were compared.

Results: Fifty one patients were evaluated with mean followup of 29 months (range 25–34 months). Mean age at the surgery was 26.5 ± 7.2 years. Lysholm, Cincinati and Tegner activity scales were significantly higher from preoperative scores (Lysholm scores: Preoperative: 51.4 ± 17.2, postoperative: 88.6 ± 7.7 [P < 0.001]; Tegner activity scores: Preoperative 3.3 ± 1.38, postoperative: 5.3 ± 1.6 [P < 0.001]; Cincinati scores: Preoperative: 44.3 ± 17, postoperative: 81.3 ± 13.9 [P < 0.001]). The mean femoral tunnel diameter increased significantly from 9.94 ± 0.79 mm postoperatively to 10.79 ± 0.95 mm (P < 0.05). The mean ROM deficit (involved vs. contra knee) was −7.2 ± 16 (P < 0.001). There was no significant difference for knee score, ROM deficits (<30 years: −7.3 ± 15 and >30 years −7.06 ± 19) and femoral tunnel enlargement (<30 years: 0.83 ± 0.52 and >30 years 0.87 ± 0.43) of the patients with below and above 30 year. There was no significant difference for knee scores and femoral tunnel enlargement between patients with meniscal injuries and don’t have meniscus lesions.

Conclusion: The AperFix system gives satisfactory clinical and radiological results with low complication rate. However, long term clinical and radiological results are needed to decide the ideal anterior cruciate ligament reconstruction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel L, Vandenakker-Albanese C, Siegel D. Anterior cruciate ligament injuries: Anatomy, physiology, biomechanics, and management. Clin J Sport Med 2012;22:349–55.

    Article  Google Scholar 

  2. Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN. Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 2000;28:705–10.

    Article  Google Scholar 

  3. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: Femoral site. Am J Sports Med 2003;31:174–81.

    Article  Google Scholar 

  4. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: Tibial site. Am J Sports Med 2003;31:182–8.

    Article  Google Scholar 

  5. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28:4845–69.

    Article  CAS  Google Scholar 

  6. Buelow JU, Siebold R, Ellermann A. A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: Extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 2002;10:80–5.

    Article  Google Scholar 

  7. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: A biomechanical analysis. Arthroscopy 2006;22:660–8.

    Article  Google Scholar 

  8. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 1985;198:43–9.

    Google Scholar 

  9. Gianotti SM, Marshall SW, Hume PA, Bunt L. Incidence of anterior cruciate ligament injury and other knee ligament injuries: A national population-based study. J Sci Med Sport 2009; 12:622–7.

    Article  Google Scholar 

  10. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 2009;17:705–29.

    Article  Google Scholar 

  11. Yosmaoglu HB, Baltaci G, Kaya D, Ozer H, Atay A. Comparison of functional outcomes of two anterior cruciate ligament reconstruction methods with hamstring tendon graft. Acta Orthop Traumatol Turc 2011;45:240–7.

    Article  Google Scholar 

  12. Lee YS, Kim SK, Park JH, Park JW, Wang JH, Jung YB, et al. Double-bundle anterior cruciate ligament reconstruction using two different suspensory femoral fixation: A technical note. Knee Surg Sports Traumatol Arthrosc 2007;15:1023–7.

  13. Unay K, Akcal MA, Gokcen B, Akan K, Esenkaya I, Poyanh O. The relationship between intra-articular meniscal, chondral, and ACL lesions: Finding from 1,774 knee arthroscopy patients and evaluation by gender. Eur J Orthop Surg Traumatol 2013.

    Google Scholar 

  14. Zhang Z, Gu B, Zhu W, Zhu L. Double-bundle versus single-bundle anterior cruciate ligament reconstructions: A prospective, randomized study with 2-year followup. Eur J Orthop Surg Traumatol 2013.

    Google Scholar 

  15. Noh JH, Roh YH, Yang BG, Yi SR, Lee SY. Femoral tunnel position on conventional magnetic resonance imaging after anterior cruciate ligament reconstruction in young men: Transtibial technique versus anteromedial portal technique. Arthroscopy 2013;29:882–90.

    Article  Google Scholar 

  16. Goldsmith MT Jansson KS, Smith SD, Engebretsen L, LaPrade RF, Wijdicks CA. Biomechanical comparison of anatomic single- and double-bundle anterior cruciate ligament reconstructions: An in vitro study. Am J Sports Med 2013;41:1595–604.

    Article  Google Scholar 

  17. Horak Z, Pokorny D, Fulfn P, Slouf M, Jahoda D, Sosna A. Polyetheretherketone (PEEK). Part I: Prospects for use in orthopaedics and traumatology. Acta Chir Orthop Traumatol Cech 2010;77:463–9.

    CAS  PubMed  Google Scholar 

  18. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB 3rd, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006;27:324–34.

    Article  CAS  Google Scholar 

  19. Ferguson SJ, Visser JM, Polikeit A. The long term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: Experimental and finite-element analysis. Eur Spine J 2006;15:149–56.

    Article  Google Scholar 

  20. Cooper W, Machen MS, Nelson J, Owens BD. Anterior cruciate ligament revision of a relatively new implant system. Orthopedics 2009;32:326.

    Article  Google Scholar 

  21. Uzumcugil O, Dogan A, Dalyaman E, Yalcinkaya M, Akman E, Ozturkmen Y, et al. AperFix versus TransFix in reconstruction of anterior cruciate ligament. J Knee Surg 2010;23:29–35.

    Article  Google Scholar 

  22. Uribe JW, Arango D, Frank J, Kiebzak GM. Two-year outcome with the AperFix system for ACL reconstruction. Orthopedics 2013;36:e159–64.

    Article  Google Scholar 

  23. Deehan DJ, Cawston TE. The biology of integration of the anterior cruciate ligament. J Bone Joint Surg Br 2005;87:889–95.

    Article  CAS  Google Scholar 

  24. Peyrache MD, Djian P, Christel P, Witvoet J. Tibial tunnel enlargement after anterior cruciate ligament reconstruction by autogenous bone-patellar tendon-bone graft. Knee Surg Sports Traumatol Arthrosc 1996;4:2–8.

    Article  CAS  Google Scholar 

  25. Fink C, Zapp M, Benedetto KP, Hackl W, Hoser C, Rieger M. Tibial tunnel enlargement following anterior cruciate ligament reconstruction with patellar tendon autograft. Arthroscopy 2001;17:138–43.

    Article  CAS  Google Scholar 

  26. Struewer J, Efe T, Frangen TM, Schwarting T, Buecking B, Ruchholtz S, et al. Prevalence and influence of tibial tunnel widening after isolated anterior cruciate ligament reconstruction using patella-bone-tendon-bone-graft: Long term followup. Orthop Rev (Pavia) 2012;4:e21.

    Article  Google Scholar 

  27. Clatworthy MG, Annear P, Bulow JU, Bartlett RJ. Tunnel widening in anterior cruciate ligament reconstruction: A prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 1999;7:138–45.

    Article  CAS  Google Scholar 

  28. Johnson D. ACL Made Simple. New York: Springer; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökay Görmeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Görmeli, G., Görmeli, C.A., Karakaplan, M. et al. Outcome of transtibial AperFix system in anterior cruciate ligament injuries. IJOO 49, 150–154 (2015). https://doi.org/10.4103/0019-5413.152436

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/0019-5413.152436

Key words

MeSH terms

Navigation