CC BY-NC-ND 4.0 · Asian J Neurosurg 2020; 15(01): 31-38
DOI: 10.4103/ajns.AJNS_351_19
Original Article

Incidence and risk factors for venous thromboembolism following craniotomy for intracranial tumors: A cohort study

Anukoon Kaewborisutsakul
3   Neurological Surgery Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla
,
Thara Tunthanathip
3   Neurological Surgery Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla
,
Pakorn Yuwakosol
3   Neurological Surgery Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla
,
Srirat Inkate
1   Nursing Services Division, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla
,
Sutthiporn Pattharachayakul
2   Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla
› Author Affiliations

Context: Venous thromboembolism (VTE) is a devastating complication of intracranial tumor surgery. The present study helps identify patients at the greatest risk of developing VTE. Aims: The aim of the study was to evaluate the incidence of and risk factors for VTE following craniotomy for intracranial tumors. Setting and Designs: This was a retrospective cohort study. Methods: Data from the institutional database (between January 2017 and December 2018) were reviewed. Consecutive patients with intracranial tumors who underwent craniotomy were included. Statistical Analysis Used: Patient characteristics were reported as descriptive data, and factors associated with VTE development were analyzed by the Cox regression model. Results: The study identified 177 patients. The incidence of VTE was 10.2% (deep-vein thrombosis [DVT], 8.5%; pulmonary embolism [PE] 1.7%; and simultaneous DVT and PE, 1.7%). In univariate analysis, VTE development was associated with diabetes mellitus (DM), operative duration of >420 min, blood transfusion, and new-onset postoperative motor deficits. DM and new-onset postoperative motor deficits were statistically significant factors in multivariable analysis, with hazard ratios of 4.52 (95% confidence interval [CI] = 1.38–14.82) and 3.46 (95% CI = 1.17–10.23), respectively. Conclusions: Postcraniotomy VTE was detected in 10.2% of patients with intracranial tumors. Risk factors for VTE included DM and new-onset postoperative motor deficits. Hence, intracranial tumor patients with these risk factors are the most likely to require VTE prophylaxis with an anticoagulant.

Financial support and sponsorship

The authors would like to thank the Faculty of Medicine, Prince of Songkla University, Thailand.




Publication History

Received: 02 December 2019

Accepted: 10 January 2020

Article published online:
16 August 2022

© 2020. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Di Nisio M, van Es N, Büller HR. Deep vein thrombosis and pulmonary embolism. Lancet 2016;388:3060-73.
  • 2 Kourlaba G, Relakis J, Mylonas C, Kapaki V, Kontodimas S, Holm MV, et al. The humanistic and economic burden of venous thromboembolism in cancer patients: A systematic review. Blood Coagul Fibrinolysis 2015;26:13-31.
  • 3 Cote LP, Greenberg S, Caprini JA, Stone J, Arcelus JI, López-Jiménez L, et al. Outcomes in neurosurgical patients who develop venous thromboembolism: A review of the RIETE registry. Clin Appl Thromb Hemost 2014;20:772-8.
  • 4 Sakamoto J, Yamashita Y, Morimoto T, Amano H, Takase T, Hiramori S, et al. Cancer-associated venous thromboembolism in the real world – From the command VTE registry. Circ J 2019;83:2271-81.
  • 5 Jo JT, Schiff D, Perry JR. Thrombosis in brain tumors. Semin Thromb Hemost 2014;40:325-31.
  • 6 Ay C, Pabinger I, Cohen AT. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb Haemost 2017;117:219-30.
  • 7 Ganau M, Prisco L, Cebula H, Todeschi J, Abid H, Ligarotti G, et al. Risk of deep vein thrombosis in neurosurgery: State of the art on prophylaxis protocols and best clinical practices. J Clin Neurosci 2017;45:60-6.
  • 8 Mahajan A, Brunson A, White R, Wun T. The epidemiology of cancer-associated venous thromboembolism: An update. Semin Thromb Hemost 2019;45:321-5.
  • 9 Rinaldo L, Brown DA, Bhargav AG, Rusheen AE, Naylor RM, Gilder HE, et al. Venous thromboembolic events in patients undergoing craniotomy for tumor resection: Incidence, predictors, and review of literature. J Neurosurg 2020;132:10-21.
  • 10 Faraoni D, Comes RF, Geerts W, Wiles MD; ESA VTE Guidelines Task Force. European guidelines on perioperative venous thromboembolism prophylaxis: Neurosurgery. Eur J Anaesthesiol 2018;35:90-5.
  • 11 Farge D, Frere C, Connors JM, Ay C, Khorana AA, Munoz A, et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol 2019;20:e566-81.
  • 12 Nyquist P, Bautista C, Jichici D, Burns J, Chhangani S, DeFilippis M, et al. Prophylaxis of venous thrombosis in neurocritical care patients: An evidence-based guideline: A statement for healthcare professionals from the neurocritical care society. Neurocrit Care 2016;24:47-60.
  • 13 Algattas H, Damania D, DeAndrea-Lazarus I, Kimmell KT, Marko NF, Walter KA, et al. Systematic review of safety and cost-effectiveness of venous thromboembolism prophylaxis strategies in patients undergoing craniotomy for brain tumor. Neurosurgery 2018;82:142-54.
  • 14 Alshehri N, Cote DJ, Hulou MM, Alghamdi A, Alshahrani A, Mekary RA, et al. Venous thromboembolism prophylaxis in brain tumor patients undergoing craniotomy: A meta-analysis. J Neurooncol 2016;130:561-70.
  • 15 Khan NR, Patel PG, Sharpe JP, Lee SL, Sorenson J. Chemical venous thromboembolism prophylaxis in neurosurgical patients: An updated systematic review and meta-analysis. J Neurosurg 2018;129:906-15.
  • 16 Pan WH, Yeh WT. How to define obesity? Evidence-based multiple action points for public awareness, screening, and treatment: An extension of Asian-pacific recommendations. Asia Pac J Clin Nutr 2008;17:370-4.
  • 17 Constantini S, Kornowski R, Pomeranz S, Rappaport ZH. Thromboembolic phenomena in neurosurgical patients operated upon for primary and metastatic brain tumors. Acta Neurochir (Wien) 1991;109:93-7.
  • 18 Aishima K, Yoshimoto Y. Screening strategy using sequential serum D-dimer assay for the detection and prevention of venous thromboembolism after elective brain tumor surgery. Br J Neurosurg 2013;27:348-54.
  • 19 Chaichana KL, Pendleton C, Jackson C, Martinez-Gutierrez JC, Diaz-Stransky A, Aguayo J, et al. Deep venous thrombosis and pulmonary embolisms in adult patients undergoing craniotomy for brain tumors. Neurol Res 2013;35:206-11.
  • 20 Kimmell KT, Walter KA. Risk factors for venous thromboembolism in patients undergoing craniotomy for neoplastic disease. J Neurooncol 2014;120:567-73.
  • 21 Frisius J, Ebeling M, Karst M, Fahlbusch R, Schedel I, Gerganov V, et al. Prevention of venous thromboembolic complications with and without intermittent pneumatic compression in neurosurgical cranial procedures using intraoperative magnetic resonance imaging. A retrospective analysis. Clin Neurol Neurosurg 2015;133:46-54.
  • 22 Nakano F, Matsubara T, Ishigaki T, Hatazaki S, Mouri G, Nakatsuka Y, et al. Incidence and risk factor of deep venous thrombosis in patients undergoing craniotomy for brain tumors: A Japanese single-center, retrospective study. Thromb Res 2018;165:95-100.
  • 23 Smith TR, Nanney AD 3rd, Lall RR, Graham RB, McClendon J Jr., Lall RR, et al. Development of venous thromboembolism (VTE) in patients undergoing surgery for brain tumors: Results from a single center over a 10 year period. J Clin Neurosci 2015;22:519-25.
  • 24 Senders JT, Goldhaber NH, Cote DJ, Muskens IS, Dawood HY, de Vos FY, et al. Venous thromboembolism and intracranial hemorrhage after craniotomy for primary malignant brain tumors: A national surgical quality improvement program analysis. J Neurooncol 2018;136:135-45.
  • 25 Lemkes BA, Hermanides J, Devries JH, Holleman F, Meijers JC, Hoekstra JB. Hyperglycemia: A prothrombotic factor? J Thromb Haemost 2010;8:1663-9.
  • 26 Gregson J, Kaptoge S, Bolton T, Pennells L, Willeit P, Burgess S, et al. Cardiovascular risk factors associated with venous thromboembolism. JAMA Cardiol 2019;4:163-73.
  • 27 Bell EJ, Folsom AR, Lutsey PL, Selvin E, Zakai NA, Cushman M, et al. Diabetes mellitus and venous thromboembolism: A systematic review and meta-analysis. Diabetes Res Clin Pract 2016;111:10-8.
  • 28 O'Connell S, Bashar K, Broderick BJ, Sheehan J, Quondamatteo F, Walsh SR, et al. The use of intermittent pneumatic compression in orthopedic and neurosurgical postoperative patients: A systematic review and meta-analysis. Ann Surg 2016;263:888-9.
  • 29 Salmaggi A, Simonetti G, Trevisan E, Beecher D, Carapella CM, DiMeco F, et al. Perioperative thromboprophylaxis in patients with craniotomy for brain tumours: A systematic review. J Neurooncol 2013;113:293-303.
  • 30 Hillegass E, Puthoff M, Frese EM, Thigpen M, Sobush DC, Auten B, et al. Role of physical therapists in the management of individuals at risk for or diagnosed with venous thromboembolism: Evidence-based clinical practice guideline. Phys Ther 2016;96:143-66.
  • 31 Akaraborworn O, Chittawatanarat K, Chatmongkolchart S, Kitsiripant C. Modalities in venous thromboembolism prophylaxis and symptomatic venous thromboembolism occurrence in critically Ill surgical patients (THAI-SICU Study). J Med Assoc Thai 2016;99 Suppl 6:S112-7.