SciELO - Scientific Electronic Library Online

 
vol.22 issue2Mathematical Modeling of Chikungunya Dynamics: Stability and Simulation author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.22 no.2 Temuco Aug. 2020

http://dx.doi.org/10.4067/S0719-06462020000200155 

Articles

A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces

T.M.M. Sow1 

1Amadou Mahtar Mbow University, Dakar, Senegal. sowthierno89@gmail.com

Abstract

In this paper, we introduce and study a new iterative method for finding a common null point of an infinite family of accretive operators with a strongly accretive and Lipschitzian operator, by using the proximal-point algorithm. And also we prove that the common null point is a unique solution of variational inequality without imposing any compactness-type condition on either the operators or the space considered. Finally, some applications of the main results to equilibrium problems and fixed point problems with an infinite family of pseudocontractive mappings are given. The main result is a generalization and improvement of numerous well-known results in the available literature.

Keywords and Phrases: Proximal-point algorithm; Accretive operators; Variational inequality; Common zeros.

Resumen

En este artículo, introducimos y estudiamos un nuevo método iterativo para encontrar un cero común de una familia infinita de operadores acretivos con un operador Lischitziano fuertemente acretivo, usando el algoritmo punto-proximal. También demostramos que el cero común es la única solución de una desigualdad variacional sin imponer ninguna condición de tipo compacidad en ninguno de los operadores o los espacios considerados. Finalmente, se entregan algunas aplicaciones de los resultados principales a problemas de equilibrio y problemas de punto fijo con una familia infinita de aplicaciones pseudo-contractivas. El resultado principal es una generalización y mejora de numerosos resultados bien conocidos en la literatura disponible.

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] Ya. Alber, Metric and generalized Projection Operators in Banach space: Properties and applications in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type,(A. G Kartsatos, Ed.), Marcel Dekker, New York, (1996). pp. 15-50. [ Links ]

[2] O. A. Boikanyo and G. Morosanu, Modified Rockafellar’s algorithm, Math. Sci. Res. J. 13 (2009), no. 5, 101-122. [ Links ]

[3] F. E. Browder, Convergenge theorem for sequence of nonlinear operator in Banach spaces, Math. Z. 100-201-225, (1976). vol. EVIII, part 2. [ Links ]

[4] E. Blum and W. Oettli , From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145. [ Links ]

[5] R. E. Bruck, Jr., A strongly convergent iterative solution of 0 ∈ U(x) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126. [ Links ]

[6] S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Programming 78 (1997), no. 1, Ser. A, 29-41. [ Links ]

[7] I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, 62, Kluwer Academic Publishers Group, Dordrecht, 1990. [ Links ]

[8] S. Chang, J. K. Kim and X. R. Wang, Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, J. Inequal. Appl. 2010, Art. ID 869684, 14 pp. [ Links ]

[9] C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Lecture Notes in Mathematics, 1965, Springer-Verlag London, Ltd., London, 2009. [ Links ]

[10] M. Eslamian and J. Vahidi, General proximal point algorithm for monotone operators, Ukraın.Mat. Zh. 68 (2016), no. 11, 1483-1492. [ Links ]

[11] K. Fan, A minimax inequality and applications, in Inequalities, III, O. Shisha, Ed., (1972). pp. 103-113, Academic Press, New York, NY, USA. [ Links ]

[12] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83, Marcel Dekker, Inc., New York, 1984. [ Links ]

[13] J. K. Kim and T. M. Tuyen, New iterative methods for finding a common zero of a finite family of monotone operators in Hilbert spaces, Bull. Korean Math. Soc. 54 (2017), no. 4, 1347-1359. [ Links ]

[14] J. K. Kim and N. Buong, A new iterative method for equilibrium problems and fixed point problems for infinite family of nonself strictly pseudocontractivemappings, Fixed Point Theory Appl. 2013, 2013:286, 13 pp.:10.1186/1687-1812-2013-286 [ Links ]

[15] J. K. Kim and T. M. Tuyen, Viscosity approximation method with Meir-Keeler contractions for common zero of accretive operators in Banach spaces, Fixed Point Theory Appl. 2015, 2015:9, 17 pp. [ Links ]

[16] J. K. Kim , P. N. Anh and H. G. Hyun, A proximal point-type algorithm for pseudo equilibrium problems, Bull. Korean Math. Soc., 49 (4)(2012), 747-759. [ Links ]

[17] J. K. Kim and Salahuddin, Existence of solutions for multi-valued equilibrium problems, Nonlinear Funct. Anal. and Appl., 23 (4)(2018), 779-795. [ Links ]

[18] J. K. Kim and Salahuddin, Extragradient methods for generalized mixed equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Funct. Anal. and Appl., 22(4)(2017), 693-709. [ Links ]

[19] N. Lehdili, A. Moudafi, Combining the proximal algorithm and Tikhonov method, Optimization, 37, (1996). 239-252. [ Links ]

[20] C. Izuchukwu et al., A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol. 20 (2019), no. 1, 193-210. [ Links ]

[21] L.O. Jolaoso, T.O. Alakoya, A. Taiwo, and O.T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo II, (2019), DOI:10.1007/s12215-019-00431-2 [ Links ]

[22] T. C. Lim, H. K. Xu, Fixed point theorems for assymptoticaly nonexpansivemapping , Nonliear Anal 22, no. 11, (1994). 1345-1355. [ Links ]

[23] I. Miyadera, Nonlinear semigroups, Translations of Mathematical Monographs, 109 American Mathematical Society, Providence, RI. (1992). [ Links ]

[24] Z. Opial, Weak convergence of sequence of succecive approximation of nonexpansive mapping, Bull; Amer. Math. soc. 73, (1967). 591-597. [ Links ]

[25] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877-898. [ Links ]

[26] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 274-276. [ Links ]

[27] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. 87 (2000), no. 1, Ser. A, 189-202. [ Links ]

[28] C. Tian and Y. Song, Strong convergence of a regularization method for Rockafellar’s proximal point algorithm, J. Global Optim. 55 (2013), no. 4, 831-837. [ Links ]

[29] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010),no. 1, 27-41. [ Links ]

[30] H.-K. Xu, A regularization method for the proximal point algorithm, J. Global Optim. 36 (2006), no. 1, 115-125. [ Links ]

[31] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240-256. [ Links ]

[32] Y. Yao and M. A. Noor, On convergence criteria of generalized proximal point algorithms, J. Comput. Appl. Math. 217 (2008), no. 1, 46-55. [ Links ]

[33] S. Wang, A general iterative method for obtaining an infinite family of strictly pseudocontractive mappings in Hilbert spaces, Appl. Math. Lett. 24 (2011), no. 6, 901-907. [ Links ]

Received: December 09, 2019; Accepted: May 28, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License