Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T14:20:49.758Z Has data issue: false hasContentIssue false

A WILD BRASSICA FROM SICILY PROVIDES TRICHOME-BASED RESISTANCE AGAINST FLEA BEETLES, PHYLLOTRETA CRUCIFERAE (GOEZE) (COLEOPTERA: CHRYSOMELIDAE)1

Published online by Cambridge University Press:  31 May 2012

P. Palaniswamy
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.P. Bodnaryk
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

The leaf trichome densities of upper and lower surfaces of wild, Mediterranean Brassica spp. were determined using light and electron microscopic techniques. Two groups of plant species, one with a density of 2171–5312 trichomes per cm2 and the other with 0–30 trichomes per cm2, were tested in the laboratory for resistance against flea beetle feeding. The extent of feeding was determined in choice tests using leaf discs or detached whole leaves and in no-choice tests using clip-on cages on intact plants. Of the seven species tested, only two, B. villosa Biv. and B. villosa Biv. subsp. drepanensis which had a trichome density of > 2172 per cm2, were found to be highly resistant to flea beetle feeding. All other species had a trichome density of < 30 per cm2 and all suffered significant damage from flea beetle feeding. Behavioural observations indicated that a high density of trichomes on undamaged B. villosa leaves acted as a physical barrier to flea beetle feeding by preventing the flea beetles from firmly settling on the leaf surface to initiate feeding. Flea beetles readily initiated feeding on areas of B. villosa leaves where trichomes were inadvertently damaged suggesting that this plant did not contain significant concentrations of feeding deterrents. Electroantennogram (EAG) studies also indicated that B. villosa leaves are as stimulating to flea beetles as other Brassica species tested. Behavioural observations, feeding tests, and EAG studies indicated that trichomes, not other factors such as chemical repellents or feeding deterrents, are responsible for the resistance in B. villosa plants to flea beetle feeding.

Résumé

La densité des trichomes sur les surfaces supérieure et inférieure des feuilles a été déterminée au moyen de techniques de microscopie photonique et de microscopie électronique chez des espèces méditerranéennes sauvages de Brassica. La résistance aux altises a été évaluée chez deux groupes d’espèces, l’un dont la densité des trichomes se situait entre 2171 et 5312 par cm2 et l’autre dont la densité des tichomes allait de 0 à 30 par cm2. Les dommages causés par le broutage des insectes ont été évalués sur des disques découpés à même les feuilles et sur des feuilles entières détachées et ont aussi été mesurés sur des plants entiers recouverts de cages amovibles. Des sept espèces examinées, seulement deux, B. villosa Biv. et B. villosa Biv. sous-esp. drepanensis, dont la densité des trichomes dépasse 2172 par cm2, se sont avérées très résistantes au parasite. Toutes les autres espèces avaient une densité de trichomes inférieure à 30 par cm2 et toutes ont subi des dommages importants conséquemment à l’alimentation des altises. L’observation du comportement des insectes a permis de constater qu’une forte densité de trichomes sur des feuilles intactes de B. villosa sert de barrière physique aux altises en les empêchant de se fixer solidement à la surface des feuilles pour se nourrir. Les altises ont réussi à se nourrir facilement sur les zones des feuilles de B. villosa où les trichomes avaient été endommagés accidentellement, ce qui semble indiquer que cette plante ne comporte pas des concentrations importantes d’inhibiteurs de l’alimentation. Des électroantennogrammes (EAG) ont également démontré que les feuilles de B. villosa sont aussi stimulantes chimiquement que les autres espèces de Brassica. L’ensemble de ces données, observations du comportement, tests alimentaires et électroantennogrammes, démontre que ce sont les trichomes, et non d’autres facteurs tels que les inhibiteurs chimiques ou les inhibiteurs alimentaires, qui sont responsables de la résistance de B. villosa à l’Altise des crucifères.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ågren, J., and Schemske, D.W.. 1992. Artificial selection on trichome number in Brassica rapa. Theoretical and Applied Genetics 83: 673678.CrossRefGoogle ScholarPubMed
Åhman, I. 1990. Plant-surface characteristics and movements of two brassica-feeding aphids, Lipaphis erysimi and Brevicoryne brassicae. Symposia Biologica Hungarica 39: 119125.Google Scholar
Bodnaryk, R.P. 1992. Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31: 26712677.CrossRefGoogle Scholar
Bodnaryk, R.P., and Lamb, R.J.. 1991. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in mustard seedlings, Sinapis alba L. Canadian Journal of Plant Science 71: 1320.CrossRefGoogle Scholar
Bracken, G.K., and Bucher, G.E.. 1986. Yield losses in canola caused by adult and larval flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). The Canadian Entomologist 118: 319324.CrossRefGoogle Scholar
Brandt, R.N., and Lamb, R.J.. 1993. Distribution of feeding damage by Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae) on oilseed rape and mustard seedlings in relation to crop resistance. The Canadian Entomologist 125: 10111021.CrossRefGoogle Scholar
Broersma, D.B., Bernard, R.L., and Luckman, W.H.. 1972. Some effects of soybean pubescence on populations of the potato leaf hopper. Journal of Economic Entomology 65: 7882.CrossRefGoogle Scholar
Burgess, L., and Wiens, J.E.. 1980. Dispensing allyl isothiocyanate as an attractant for trapping crucifer-feeding flea beetles. The Canadian Entomologist 111: 9397.CrossRefGoogle Scholar
Clawson, K.L., Specht, J.E., and Blad, B.L.. 1986 a. Growth analysis of soybean isolines differing in pubescence density. Agronomy Journal 78: 164172.CrossRefGoogle Scholar
Clawson, K.L., Specht, J.E., Blad, B.L., and Garay, A.F.. 1986 b. Water-use efficiency in soybeanpubescence isolines: A calculation procedure for estimating daily values. Agronomy Journal 78: 483487.CrossRefGoogle Scholar
Dickens, J.C., and Boldt, P.E.. 1985. Electroantennogram responses of Trirhabda bacharides (Weber) (Coleoptera: Chrysomelidae) to plant volatiles. Journal of Chemical Ecology 11: 767779.CrossRefGoogle Scholar
Gausman, H.W., and Cardenas, R.. 1973. Light reflectance by leaflets of pubescent, normal and glabrous soybean lines. Agronomy Journal 65: 837838.CrossRefGoogle Scholar
Guerin, P.M., and Stadler, E.. 1984. Carrot fly cultivar preferences: Some influencing factors. Ecological Entomology 9: 413420.CrossRefGoogle Scholar
Guerin, P.M., and Visser, J.H.. 1980. Electroantennogram responses of the carrot fly, Psila rosae to volatile plant components. Physiological Entomology 5: 111119.CrossRefGoogle Scholar
Hansson, B.S., Van der Pers, J.N.C., and Lofqvist, J.. 1989. Comparison of male and female olfactory cell response to pheromone compounds and plant volatiles in the turnip moth, Agrotis segetum. Physiological Entomology 14: 147155.CrossRefGoogle Scholar
Khan, Z.R., Ward, J.T., and Norris, D.M.. 1986. Role of trichomes in soybean resistance to cabbage looper, Trichoplusia ni. Entomologia Experimentalis et Applicata 42: 109117.CrossRefGoogle Scholar
Lamb, R.J. 1980. Hairs protect pods of mustard (Brassica hirta ‘Gisilba’) from flea beetle feeding damage. Canadian Journal of Plant Science 60: 14391440.CrossRefGoogle Scholar
Lamb, R.J. 1989. Entomology of oilseed Brassica crops. Annual Review of Entomology 34: 211229.CrossRefGoogle Scholar
Lamb, R.J., and Turnock, W.J.. 1982. Economics of insecticidal control of flea beetles (Coleoptera: Chrysomelidae) attacking rape in Canada. The Canadian Entomologist 114: 827840.CrossRefGoogle Scholar
Lambert, L., Beach, R.M., Kilen, T.C., and Todd, J.W.. 1992. Soybean pubescence and its influence on larval development and oviposition preference of Lepidopterous insects. Crop Science 32: 463466.CrossRefGoogle Scholar
Lambert, L., and Kilen, T.C.. 1989. Influence and performance of soybean lines isogenic for pubescence type on oviposition preference and egg distribution of corn earworm (Lepidoptera: Noctuidae). Journal of Entomological Sciences 24: 309316.CrossRefGoogle Scholar
Light, D.M., and Jang, E.B.. 1987. Electroantennogram responses of the oriental fruit fly, Dacus dorsalis, to a spectrum of alcohol and aldehyde plant volatiles. Entomologia Experimentalis et Applicata 45: 5564.CrossRefGoogle Scholar
Light, D.M., Jang, E.B., and Dickens, J.C.. 1988. Electroantennogram responses of the Mediterranean fruit fly, Ceratitis capitata, to a spectrum of plant volatiles. Journal of Chemical Ecology 14: 159180.CrossRefGoogle ScholarPubMed
Mithen, R.F., and Herron, C.. 1991. Transfer of disease resistance to oilseed rape from wild Brassica species. pp. 224249in McGregor, D.I. (Ed.), Proceedings of the Eighth International Rapeseed Congress, Vol. 1.Google Scholar
Nielsen, D.C., Blad, B.L., Verma, S.B., Rosenberg, N.J., and Specht, J.E.. 1984. Influence of soybean pubescence type on radiation balance. Agronomy Journal 76: 924929.CrossRefGoogle Scholar
Palaniswamy, P., Gillott, C., and Slater, G.P.. 1986. Attraction of diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), by volatile compounds of canola, white mustard, and faba bean. The Canadian Entomologist 118: 12791285.CrossRefGoogle Scholar
Palaniswamy, P., Lamb, R.J., and McVetty, P.B.E.. 1992. Screening for antixenosis resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), in rapeseed and related crucifers. The Canadian Entomologist 124: 895906.CrossRefGoogle Scholar
Papp, M., Kolarov, J., and Mesterházy, A.. 1992. Relation between pubescence of seedling and flag leaves of winter wheat and its significance in breeding resistance to cereal leaf beetle (Coleoptera: Chrysomelidae). Environmental Entomology 21: 700705.CrossRefGoogle Scholar
Ramachandran, R., Khan, Z.R., Caballero, P., and Juliano, B.O.. 1990. Olfactory sensitivity of two sympatric species of rice leaf folders (Lepidoptera: Pyralidae) to plant volatiles. Journal of Chemical Ecology 9: 26472666.CrossRefGoogle Scholar
Ramachandran, R., and Norris, D.M.. 1991. Volatiles mediating plant–herbivore–natural enemy interactions: Electroantennogram responses of soybean looper, Pseudoplusia includens, and a parasitoid, Microplitis demolitor, to green leaf volatiles. Journal of Chemical Ecology 8: 16651690.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics, Version 5 ed. SAS Institute, Cary, NC. 1290 pp.Google Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. Freeman, San Francisco, CA. 859 pp.Google Scholar
Stoner, K.A. 1992. Density of imported cabbageworms (Lepidoptera: Pieridae), cabbage aphids (Homoptera: Aphididae), and flea beetles (Coleoptera: Chrysomelidae) on glossy and trichome-bearing lines of Brassica oleracea. Journal of Economic Entomology 85: 10231030.CrossRefGoogle Scholar
Turnipseed, S.G. 1976. Influence of trichome variations on populations of small phytophagous insects in soybean. Environmental Entomology 6: 815817.CrossRefGoogle Scholar
Visser, J.H. 1979. Electroantennogram responses of Colorado beetle, Leptinotarsa decemlineata to plant volatiles. Entomologia Experimentalis et Applicata 25: 8697.CrossRefGoogle Scholar
Visser, J.H. 1986. Host odour perception in phytophagus insects. Annual Review of Entomology 31: 121144.CrossRefGoogle Scholar
Warwick, S.I., and Black, L.D.. 1991. Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae) — chloroplast genome and cytodeme congruence. Theoretical and Applied Genetics 82: 8192.CrossRefGoogle ScholarPubMed
Webster, J.A. 1975. Association of Plant Hairs and Insect Resistance. Agriculture Research Service, USDA Miscellaneous Publications 1297: 1 p.Google Scholar
Wooley, J.T. 1964. Water relations of soybean leaf hairs. Agronomy Journal 56: 569571.CrossRefGoogle Scholar
Zhang, J., Specht, J.E., Graef, G.L., and Johnson, B.E.. 1992. Pubescence density effects on soybean seed yield and other agronomic traits. Crop Science 32: 641648.CrossRefGoogle Scholar