Solubility and Aggregation Behavior of Octanoyl Amino Acids Magnesium Complexes

Article Preview

Abstract:

Using L-octanoyl alanine and L-octanoyl phenylalanine as precursors, they are reacted with magnesium hydroxide to prepare two low-molecular complexes Mg(oct-L-ala)2 and Mg(oct-L-phe)2. The composition and structure of the two complexes are characterized by elemental analysis, nuclear magnetic resonance spectroscopy and moisture analyzer, with the solubility and aggregation behavior of the complexes studied. A comparison of the two complexes shows that the Mg(oct-L-ala)2 complex exhibits better solubility and is easier to aggregate in the mixed solution. In addition, the aggregated solid formed by the aggregation of these two complexes in the solution has optically heterogeneous properties. After further heating and cooling treatment, the Mg(oct-L-phe)2 complex still retains the optically anisotropic state (liquid crystal state), while the Mg(oct-L-ala)2 complex forms an optically homogeneous morphology (glass state). This may be affected by the benzene ring functional group in the Mg(oct-L-phe)2 complex.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 323)

Pages:

87-99

Citation:

Online since:

August 2021

Export:

Price:

* - Corresponding Author

[1] M.Iida, R. Masuda, G. Naren, Y. Z. Bin, K. Kajiwara.  Formation of stable molecular glasses of Yttrium (III) Acyl - DL - alaninate complexes. Chem. Lett, 33(2004) 1462-1463.

DOI: 10.1246/cl.2004.1462

Google Scholar

[2] M. Iida, G. Naren, S. Hashimoto. Formation of molecular glasses of ( N-Acylalaninato) europium (III) complexes and the luminescence properties. J. Alloys Compd, (2004) 1022-1025.

DOI: 10.1016/j.jallcom.2004.12.183

Google Scholar

[3] G. Naren, R. Masuda, M.Iida, M. Harada, H. Kurosu, T. Suzuki, T. Kimura. Formation of molecular glasses and the aggregation in solutions for lanthanum (III), calcium (II), and yttrium (III) complexes of octanoyl - DL – alaninate. Dalton Trans, 13(2008) 1698-1709.

DOI: 10.1039/b713768k

Google Scholar

[4] J. Y. Mu. Research progress of amino acid chelated iron in animal nutrition. Animal science Abroad, 40(2020) 68-70.

Google Scholar

[5] J. Lin, X. L. Hu, J. Y. Li, X. Y. Lyu, H. Wang. Research progress in N-phenylpropenoyl-L-amino Acids. Progress in pharmaceutical sciences, 42(2018) 52-59.

Google Scholar

[6] S. F. Gao, Y. C. Zhang, J. M. Li, B. Zhang, Y. Yang, M. Q. Hu. Synthesis and biological evaluation of novel phenylpropenoyl-amino acid derivatives. Chinese Journal of Organic Chemistry, 39(2019) 1953-1961.

DOI: 10.6023/cjoc201812037

Google Scholar

[7] G. Naren, A. Yasuda, M. Iida, M. Harada, T. Suzuki,M. Kato. Aggregation in methanol and formation of molecular glasses for europium (III) N-acylaminocarboxylates : Effects of alkyl chain length and headgroup. Dalton Trans, 28(2009) 5512-5522.

DOI: 10.1039/b820169b

Google Scholar

[8] G.Naren , E. Hua, X. Tia. Solubility and aggregation behavior of capryloyl alaninate magnesium(II), Calcium(II) and Zinc(II) complexes. Fine Chemicals, 32(2015) 741-745.

Google Scholar

[9] E. Hua, S. Ohkawa, M. Iida. Aggregation behavior of alkylethylenediamine palladium(II) complexes in water and in water/organic solvent mixtures. Colloids and Surf A, 301(2007) 189-198.

DOI: 10.1016/j.colsurfa.2006.12.053

Google Scholar

[10] M. Iida, M.Yamamoto, N. Fujita. Multinuclear NMR studies on micellar formation of aqueous [go(N-octyl or N-dodecylethylenediamine) (3,7-diazanonane-1,9 -diamine]3+ solutions. Bull Chem Soc Jpn, 69(1996) 3217-3224.

DOI: 10.1246/bcsj.69.3217

Google Scholar

[11] M.J. Rosen, J.T. Kunjappu. Surfactants and interfacial phenomena. WILEY, (2012).

Google Scholar

[12] R.Rajan, M.M. Nuh, K. Nurolaini, S. R. David. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Drug design, development and therapy, 11(2017) 11393-11406.

DOI: 10.2147/dddt.s103505

Google Scholar