Overall Heat Transfer Coefficient of Functionally Graded Hollow Cylinder

Article Preview

Abstract:

This paper presents how to calculate the overall heat transfer coefficient of a very long functionally graded hollow circular cylinder subjected to steady state heat transfer. Thermal conductivity coefficient of the functionally graded cylinder (FGC) vary radially and continuously according to an exponential form, which is supposed to be independent of the temperature. Overall heat transfer coefficient is found analytically in terms of the radial coordinate, thermal conductivity, material parameter, inner surface and outer surface temperatures of the cylinder. Once the overall heat transfer coefficient is found, calculation of the heat transfer rate across the cylinder wall is quite straightforward. The equation derived for the overall heat transfer coefficient can be applied to any type of functionally graded hollow circular cylinder playing with the material parameter term.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 267)

Pages:

177-181

Citation:

Online since:

October 2017

Authors:

Export:

Price:

* - Corresponding Author

[1] A. Ozturk, M. Gulgec, Analytical solution of thermal stresses in a functionally graded solid cylinder within parabolic continuous grading, Appl. Mech. Mater. 307 (2013) 364-367.

DOI: 10.4028/www.scientific.net/amm.307.364

Google Scholar

[2] H.J. Zhao, Z.S. Shao, M.Z. Wu, Analysis of thermo-mechanical stresses in laminated hollow circular cylinder with finite length, Key Eng. Mat. 462-463 (2011) 1182-1187.

DOI: 10.4028/www.scientific.net/kem.462-463.1182

Google Scholar

[3] C.H. Chen, H. Awaji, Transient and residual stresses in a hollow cylinder of functionally graded materials, Mater. Sci. Forum. 423-425 (2003) 665-670.

DOI: 10.4028/www.scientific.net/msf.423-425.665

Google Scholar

[4] S. Topal, M. Gulgec, Thermal stress analysis of an FGM cylinder under the effect of convection and radially varying temperature distribution, Mater. Sci. Forum. 631-632 (2010) 23-28.

DOI: 10.4028/www.scientific.net/msf.631-632.23

Google Scholar

[5] A. Ozturk, M. Gulgec, Elastic–plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation, Int. J. Eng. Sci. 49 (2011) 1047-1061.

DOI: 10.1016/j.ijengsci.2011.06.001

Google Scholar

[6] R. Nedin, S. Nesterov, A. Vatulyan, Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials, Int. J. Heat Mass Tran. 102 (2016) 213-218.

DOI: 10.1016/j.ijheatmasstransfer.2016.06.027

Google Scholar

[7] Y.C. Yang, et al. Inverse hyperbolic thermoelastic analysis of a functionally graded hollow circular cylinder in estimating surface heat flux and thermal stresses, Int. J. Heat Mass Tran. 60 (2013) 125-133.

DOI: 10.1016/j.ijheatmasstransfer.2012.12.052

Google Scholar

[8] P. Ostrowski, B. Michalak, Non-stationary heat transfer in a hollow cylinder with functionally graded material properties, J. Theor. App. Mech-Pol. 49. 2 (2011) 385-397.

DOI: 10.1002/pamm.201010149

Google Scholar

[9] J.N. Reddy, C.D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stresses. 21. 6 (1998) 593-626.

DOI: 10.1080/01495739808956165

Google Scholar

[10] B. Chen, L. Tong, Sensitivity analysis of heat conduction for functionally graded materials, Mater Design. 25(8) (2004) 663-672.

DOI: 10.1016/j.matdes.2004.03.007

Google Scholar

[11] H.K. Ching, J.K. Chen, Thermal stress analysis of functionally graded composites with temperature-dependent material properties, J. Mech Mater. Struct. 2(4) (2007) 633-653.

DOI: 10.2140/jomms.2007.2.633

Google Scholar

[12] T. Jamiru, O. Adekomaya, R. Sadiku, Z. Huan, Analysis of Overall Heat Transfer Coefficient of Composite Panels for Thermal Insulation, Appl. Mech. Mater., 864 (2017) 179-183.

DOI: 10.4028/www.scientific.net/amm.864.179

Google Scholar

[13] S. Kakaç, Y. Yener, Heat Conduction, Univ. of Miami, Coral Gables, FL, (1985).

Google Scholar

[14] C.O. Horgan, A.M. Chan, The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials, J. Elasticity. 55 (1999) 43-59.

Google Scholar