Enhanced Internal Gettering of Iron in n/n+ Epitaxial Silicon Wafer: Effect of High Temperature Rapid Thermal Annealing in Nitrogen Ambient

Article Preview

Abstract:

We report a strategy feasible for improving the internal gettering (IG) capability of iron (Fe) for n/n+ epitaxial silicon wafers using the heavily arsenic (As)-doped Czochralski (CZ) silicon wafers as the substrates. The n/n+ epitaxial silicon wafers were subjected to the two-step anneal of 650 °C/16 h + 1000 °C/16 h following the rapid thermal processing (RTP) at 1250 °C in argon (Ar) or nitrogen (N2) atmosphere. It is found that the prior RTP in N2 atmosphere exhibits much stronger enhancement effect on oxygen precipitation (OP) in the substrates than that in Ar atmosphere, thereby leading to a better IG capability of Fe contamination on the epitaxial wafer. In comparison with the RTP in Ar atmosphere, the one in N2 atmosphere injects not only vacancies but also nitrogen atoms of high concentration into the heavily As-doped silicon substrate. The co-action of vacancy and nitrogen leads to the enhanced OP in the substrate and therefore the better IG capability for the n/n+ epitaxial silicon wafer.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

218-223

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] S. Dubois, O. Palais, P.J. Ribeyron, N. Enjalbert, M. Pasquinelli, S. Martinuzzi, Effect of intentional bulk contamination with iron on multicrystalline silicon solar cell properties, J. Appl. Phys. 102 (2007) 083525.

DOI: 10.1063/1.2799057

Google Scholar

[2] J.E. Birkholz, K. Bothe, D. Macdonald, J. Schmidt, Electronic properties of iron-boron pairs in crystalline silicon by temperature- and injection-level-dependent lifetime measurements, J. Appl. Phys. 97 (2005) 103708.

DOI: 10.1063/1.1897489

Google Scholar

[3] D. Macdonald, L.J. Geerligs, Impact of Metal Contamination in Silicon Solar Cells, Appl. Phys. Lett. 85 (2004) 4061-4063.

Google Scholar

[4] A.A. Istratov, H. Hieslmair, E.R. Weber, Iron and its complexes in silicon, Appl. Phys. A 69 (1999) 13-44.

Google Scholar

[5] A.A. Istratov, H. Hieslmair, E.R. Weber, Iron contamination in silicon technology, Appl. Phys. A 70 (2000) 489-534.

DOI: 10.1007/s003390051074

Google Scholar

[6] B.D. Choi, D.K. Schroder, Degradation of ultrathin oxides by iron contamination, Appl. Phys. Lett. 79 (2001) 2645-2647.

DOI: 10.1063/1.1410363

Google Scholar

[7] J. Wong-Leung, D.J. Eaglesham, J. Sapjeta, D.C. Jacobson, J.M. Poate, J.S. Williams, The precipitation of Fe at the Si-SiO2 interface, J. Appl. Phys. 83 (1998) 580-584.

DOI: 10.1063/1.366643

Google Scholar

[8] P. Zhang, H. Vainola, A.A. Istratov, E.R. Weber, Thermal stability of internal gettering of iron in silicon and its impact on optimization of gettering, Appl. Phys. Lett. 83 (2003) 4324-4326.

DOI: 10.1063/1.1630158

Google Scholar

[9] A.A. Istratov, W. Huber, E.R. Weber, Modeling of competitive gettering of iron in silicon integrated circuit technology, J. Electrochem. Soc. 150 (2003) G244-G252.

DOI: 10.1149/1.1556598

Google Scholar

[10] H. Hieslmair, A.A. Istratov, S.A. McHugo, C. Flink, E.R. Weber, Analysis of iron precipitation in silicon as a basis for gettering simulations, J. Electrochem. Soc. 145 (1998) 4259-4264.

DOI: 10.1149/1.1838948

Google Scholar

[11] H. Hieslmair, A.A. Istratov, S.A. McHugo, C. Flink, T. Heiser, E.R. Weber, Gettering of iron by oxygen precipitates, Appl. Phys. Lett. 72 (1998) 1460-1462.

DOI: 10.1063/1.120592

Google Scholar

[12] B. Shen, X.Y. Zhang, K. Yang, P. Chen, R. Zhang, Y. Shi, Y.D. Zheng, T. Sekiguchi, K. Sumino, Gettering of Fe impurities by bulk stacking faults in Czochralski-grown silicon, Appl. Phys. Lett. 70 (1997) 1876-1878.

DOI: 10.1063/1.118718

Google Scholar

[13] S.M. Myers, M. Seibt, W. Schröter, Mechanisms of transition-metal gettering in silicon, J. Appl. Phys. 88 (2000) 3795-3819.

DOI: 10.1063/1.1289273

Google Scholar

[14] A. Haarahiltunen, H. Savin, M. Yli-Koski, H. Talvitie, J. Sinkkonen, Modeling phosphorus diffusion gettering of iron in single crystal silicon, J. Appl. Phys. 105 (2009) 023510.

DOI: 10.1063/1.3068337

Google Scholar

[15] J. Schoen, V. Vahanissi, A. Haarahiltunen, M.C. Schubert, W. Warta, H. Savin, Main defect reactions behind phosphorus diffusion gettering of iron, J. Appl. Phys. 116 (2014) 244503.

DOI: 10.1063/1.4904961

Google Scholar

[16] B. Wang, X.P. Zhang, X.Y. Ma, D.R. Yang, Effects of high temperature rapid thermal processing on oxygen precipitation in heavily arsenic-doped Czochralski silicon, J. Cryst. Growth 318 (2011) 183-186.

DOI: 10.1016/j.jcrysgro.2010.11.016

Google Scholar

[17] X. Zhang, C. Gao, M. Fu, X. Ma, J. Vanhellemont, D. Yang, Impact of rapid thermal processing on oxygen precipitation in heavily arsenic and antimony doped Czochralski silicon, J. Appl. Phys. 113 (2013) 163510.

DOI: 10.1063/1.4803061

Google Scholar

[18] J. Vanhellemont, C. Claeys, A theoretical study of the critical radius of precipitates and its application to silicon oxide in silicon, J. Appl. Phys. 62 (1987) 3960-3967.

DOI: 10.1063/1.339194

Google Scholar

[19] V.V. Voronkov, R. Falster, Intrinsic point defects and impurities in silicon crystal growth, J. Electrochem. Soc. 149 (2002) G167-G174.

DOI: 10.1149/1.1435361

Google Scholar

[20] R. Falster, V.V. Voronkov, On the properties of the intrinsic point defects in silicon: A perspective from crystal growth and wafer processing, Physica Status Solidi B 222 (2000) 219-244.

DOI: 10.1002/1521-3951(200011)222:1<219::aid-pssb219>3.0.co;2-u

Google Scholar

[21] H. Sawada, K. Kawakami, First-principles calculation of the interaction between nitrogen atoms and vacancies in silicon, Phys. Rev. B 62 (2000) 1851-1858.

DOI: 10.1103/physrevb.62.1851

Google Scholar

[22] F. Sahtout Karoui, A. Karoui, A density functional theory study of the atomic structure, formation energy, and vibrational properties of nitrogen-vacancy-oxygen defects in silicon, J. Appl. Phys. 108 (2010) 033513.

DOI: 10.1063/1.3387912

Google Scholar

[23] C.S. Chen , C.F. Li , H.J. Ye , S.C. Shen, D.R. Yang, Formation of nitrogen-oxygen donors in N-doped Czochralski silicon crystal, J. Appl. Phys. 76 (1994) 3347-3350.

DOI: 10.1063/1.357458

Google Scholar