Iron Management in Multicrystalline Silicon through Predictive Simulation: Point Defects, Precipitates, and Structural Defect Interactions

Article Preview

Abstract:

In multicrystalline silicon for photovoltaic applications, high concentrations of iron are usually found, which deteriorate material performance. Due to the limited solubility of iron in silicon, only a small fraction of the total iron concentration is present as interstitial solute atoms while the vast majority is present as iron silicide precipates. The concentration of iron interstitials can be effectively reduced during phosphorus diffusion gettering (PDG), but this strongly depends on the size and density of iron precipitates, which partly dissolve during high-temperature processing. The distribution of precipitated iron varies along the height of a mc-Si ingot and is not significantly reduced during standard PDG steps. However, the removal of both iron interstitials and precipitates can be enhanced by controlling their kinetics through carefully engineered time-temperature profiles, guided by simulations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

15-25

Citation:

Online since:

October 2013

Export:

Price:

[1] P. Mints, SPV market research, the global market for pv technologies, in: 9th Photovoltaic Science Application and Technology Conference and Exhibition, (2012).

Google Scholar

[2] A. A. Istratov, T. Buonassisi, R. J. McDonald, A. R. Smith, R. Schindler, J. A. Rand, J. P. Kalejs, E. R. Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, J. Appl. Phys. 94 (2003).

DOI: 10.4028/www.scientific.net/ssp.95-96.175

Google Scholar

[3] T. Buonassisi, A. A. Istratov, M. D. Pickett, M. Heuer, J. P. Kalejs, G. Hahn, M. A. Marcus, B. Lai, Z. Cai, S. M. Heald, T. F. Ciszek, R. F. Clark, D. W. Cunningham, A. M. Cabor, R. Jonczyk, S. Narayanan, E. Sauar, E. R. Weber, Chemical natures and distributions of metal impurities in multicrystalline silicon materials, Prog. Photovoltaics res. appl. 14 (2006).

DOI: 10.1002/pip.690

Google Scholar

[4] V. Kveder, M. Kittler, W. Schroter, Recombination activity of contaminated dislocations in silicon: a model describing electron-beam-induced current contrast behavior, Phys. Rev. B 63 (2001) 115208.

DOI: 10.1103/physrevb.63.115208

Google Scholar

[5] J. Murphy, K. Bothe, V. Voronkov, R. Falster, On the mechanism of recombination at oxide precipitates in silicon, Appl. Phys. Lett. 102 (4) (2013) 042105.

DOI: 10.1063/1.4789858

Google Scholar

[6] R. Kvande, B. Geerligs, G. Coletti, L. Arnberg, M. D. Sabatino, E. J. Ovrelid, C. C. Swanson, Distribution of iron in multi-crystalline silicon ingots, J. Appl. Phys. 104 (2008) 064905.

DOI: 10.1063/1.2956697

Google Scholar

[7] E. Olsen, E. Øvrelid, Silicon nitride coating and crucible effects of using upgraded materials in the casting of multicrystalline silicon ingots, Prog. Photovoltaics res. appl. 16 (2) (2008) 93-100.

DOI: 10.1002/pip.777

Google Scholar

[8] T. U. Nerland, L. Arnberg, A. Holt, Origin of the low carrier lifetime edge zone in multicrystalline pv silicon, Prog. Photovoltaics res. appl. 17 (2008) 289 - 296.

DOI: 10.1002/pip.876

Google Scholar

[9] D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, L. J. Geerligs, Transition-metal profiles in a multicrystalline silicon ingot, J. Appl. Phys. 97 (2005) 033523-1 - 033523-7.

DOI: 10.1063/1.1845584

Google Scholar

[10] T. Buonassisi, A. A. Istratov, M. Heuer, M. A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S. Heald, W. Warta, R. Schindler, G. Willeke, E. R. Weber, Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells, J. Appl. Phys. 97 (2005).

DOI: 10.1063/1.1866489

Google Scholar

[11] B. L. Sopori, L. Jastrzebski, T. Tan, A comparison of gettering in single-and multicrystalline silicon for solar cells, in: Proc. 25th IEEE PVSC, Washington, D.C., 1996, p.625.

DOI: 10.1109/pvsc.1996.564206

Google Scholar

[12] S. Rein, S. W. Glunz, Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy, J. Appl. Phys. 98 (2005) 113711.

DOI: 10.1063/1.2106017

Google Scholar

[13] P. Gundel, M. C. Schubert, F. D. Heinz, W. Kwapil, W. Warta, G. Martinez-Criado, M. Reiche, E. R. Weber, Impact of stress on the recombination at metal precipitates in silicon, J. Appl. Phys. 108 (10) (2010) 103707.

DOI: 10.1063/1.3511749

Google Scholar

[14] T. Buonassisi, A. Istratov, M. Marcus, B. Lai, Z. Cai, S. Heald, E. Weber, Engineering metal-impurity nanodefects for low-cost solar cells, Nat. Mater. 4 (2005) 676-679.

DOI: 10.1038/nmat1457

Google Scholar

[15] D. P. Fenning, J. Hofstetter, M. I. Bertoni, G. Coletti, B. Lai, C. del Canizo, T. Buonassisi, Precipitated iron: A limit on gettering efficacy in multicrystalline silicon, J. Appl. Phys. 113 (4) (2013) 044521.

DOI: 10.1063/1.4788800

Google Scholar

[16] D. M. Powell, D. P. Fenning, J. Hofstetter, J. F. Lelievre, C. d. Canizo, T. Buonassisi, TCAD for PV - a fast method to accurately model metal impurity evolution during solar cell processing, PV International 15 (2012) 91.

Google Scholar

[17] J. Hofstetter, J. F. Leliévre, C. del Cañizo, A. Luque, Study of internal versus external gettering of iron during slow cooling processes for silicon solar cell fabrication, Solid State Phenomena 156-158 (2010) 387-393.

DOI: 10.4028/www.scientific.net/ssp.156-158.387

Google Scholar

[18] D. P. Fenning, J. Hofstetter, M. I. Bertoni, S. Hudelson, M. Rinio, J. F. Lelièvre, B. Lai, C. del Cañizo, T. Buonassisi, Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling, Appl. Phys. Lett. 98 (2011).

DOI: 10.1063/1.3575583

Google Scholar

[19] J. -F. Lelievre, J. Hofstetter, A. Peral, I. Hocesc, F. Recart, C. del Canizo, Dissolution and gettering of iron during contact co-firing, Energy Procedia 8 (2011) 257 - 262.

DOI: 10.1016/j.egypro.2011.06.133

Google Scholar

[20] J. Hofstetter, D. P. Fenning, J. -F. Lelièvre, C. del Cañizo, T. Buonassisi, Engineering metal precipitate size distributions to enhance gettering in multicrystalline silicon, phys. stat. sol. (a) 209 (10) (2012) 1861- -1865.

DOI: 10.1002/pssa.201200360

Google Scholar

[21] D. P. Fenning, A. S. Zuschlag, M. I. Bertoni, B. Lai, G. Hahn, T. Buonassisi, Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion, J. Appl. Phys. 113 (2013) 214504.

DOI: 10.1063/1.4808310

Google Scholar

[22] D. H. Macdonald, L. J. Geerligs, A. Azzizi, Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping, J. Appl. Phys. 95 (3) (2004) 1021-1028.

DOI: 10.1063/1.1637136

Google Scholar

[23] J. Hofstetter, D. P. Fenning, M. I. Bertoni, J. F. Lelièvre, C. del Cañizo, T. Buonassisi, Impurity-toefficiency simulator: Predictive simulation of silicon solar cell performance based on iron content and distribution, Prog. Photovoltaics Res. Appl. 19 (2010).

DOI: 10.1002/pip.1062

Google Scholar

[24] J. Hofstetter, J. F. Lelièvre, D. P. Fenning, M. I. Bertoni, T. Buonassisi, C. del Cañizo, Towards the tailoring of p diffusion gettering to as-grown silicon material properties, Solid State Phenomena 178 (2011) 158-165.

DOI: 10.4028/www.scientific.net/ssp.178-179.158

Google Scholar

[25] Impurities-to-Efficiency (I2E) simulator, online applet, http: /pv-i2e. mit. edu.

Google Scholar

[26] H. Hieslmair, S. Balasubramanian, A. A. Istratov, E. R. Weber, Gettering simulator: physical basis and algorithm, Semiconductor Science and Technology 16 (2001) 567-574.

DOI: 10.1088/0268-1242/16/7/307

Google Scholar

[27] C. del Canizo, A. Luque, A comprehensive model for the gettering of lifetime-killing impurities in silicon, J. Electrochem. Soc. 147 (2000) 2685-2692.

DOI: 10.1149/1.1393590

Google Scholar

[28] M. Seibt, A. Sattler, C. Rudolf, O. Voss, V. Kveder, W. Schroter, Gettering in silicon photovoltaics: current state and future perspectives, phys. stat. sol. (a) 203 (2006) 696.

DOI: 10.1002/pssa.200664516

Google Scholar

[29] A. Bentzen, A. Holt, R. Kopecek, G. Stokkan, J. S. Christensen, B. G. Svensson, Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing, J. Appl. Phys. 99 (2006) 093509.

DOI: 10.1063/1.2194387

Google Scholar

[30] A. Haarahiltunen, H. Vainola, O. Anttila, E. Saarnilehto, M. Yli-Koski, J. Storgards, J. Sinkkonen, Modeling of heterogeneous precipitation of iron in silicon, Appl. Phys. Lett. 87 (2005) 151908.

DOI: 10.1063/1.2099531

Google Scholar

[31] J. Schon, H. Habenicht, M. C. Schubert, W. Warta, Understanding the distribution of iron in multicrystalline silicon after emitter formation: Theoretical model and experiments, J. Appl. Phys. 109 (6) (2011) 063717.

DOI: 10.1063/1.3553858

Google Scholar

[32] R. Chen, H. Wagner, A. Dastgheib-Shirazi, M. Kessler, Z. Zhu, V. Shutthanandan, P. P. Altermatt, S. T. Dunham, A model for phosphosilicate glass deposition via pocl 3 for control of phosphorus dose in si, J. Appl. Phys. 112 (12) (2012) 124912.

DOI: 10.1063/1.4771672

Google Scholar

[33] J. D. Murphy, R. J. Falster, http: /dx. doi. org/10. 1002/pssr. 201105388Contamination of silicon by iron at temperatures below 8000c, phys. stat. sol. RRL 5 (10-11) (2011).

Google Scholar

[34] J. D. Murphy, R. J. Falster, The relaxation behaviour of supersaturated iron in single-crystal silicon at 500 to 7500 c, J. Appl. Phys. 112 (11) (2012) 113506.

DOI: 10.1063/1.4767378

Google Scholar

[35] G. Coletti, R. Kvande, V. D. Mihailetchi, L. J. Geerligs, L. Arnberg, E. J. Ovrelid, Effect of iron in silicon feedstock on p- and n-type multicrystalline silicon solar cells, J. Appl. Phys. 104 (2008) 104913.

DOI: 10.1063/1.3021355

Google Scholar

[36] J. Harkonen, V. -P. Lempinen, T. Juvonen, J. Kylmaluoma, Recovery of minority carrier lifetime in lowcost multicrystalline silicon, Sol. Energ. Mat. Sol. Cells 73 (2003) 125-130.

DOI: 10.1016/s0927-0248(01)00117-9

Google Scholar

[37] P. Manshanden, L. Geerligs, Improved phosphorous gettering of multicrystalline silicon, Sol. Energy Mater. Sol. Cells 90 (2006) 998-1012.

DOI: 10.1016/j.solmat.2005.05.015

Google Scholar

[38] J. Tan, A. Cuevas, D. Macdonald, N. Bennett, I. Romijn, T. Trupke, R. Bardos, Optimised gettering and hydrogenation of multi-crystalline silicon wafers for use in solar cells, in: Proc. 22nd EUPVSEC, Milan, Italy, 2007, pp.1309-1313.

Google Scholar

[39] M. D. Pickett, T. Buonassisi, Iron point defect reduction in multicrystalline silicon solar cells, Appl. Phys. Lett. 92 (2008) 122103.

DOI: 10.1063/1.2898204

Google Scholar

[40] M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y. P. B. Mouafi, D. Borchert, A. Montesdeoca-Santana, Improvement of multicrystalline silicon solar cells by a low temperature anneal after emitter diffusion, Prog. Photovoltaics Res. Appl. 19 (2010).

DOI: 10.1002/pip.1002

Google Scholar

[41] J. Hofstetter, D. P. Fenning, T. Buonassisi, Toward customizing the solar cell process to as-grown silicon material properties, unpublished.

Google Scholar

[42] P. Plekhanov, R. Gafiteanu, U. Gösele, T. Tan, Modeling of gettering of precipitated impurities from si for carrier lifetime improvement in solar cell applications, J. Appl. Phys. 86 (1999) 2453-2458.

DOI: 10.1063/1.371075

Google Scholar

[43] D. P. Fenning, High temperature defect engineering for silicon solar cells: Predictive process simulation and synchrotron-based microcharacterization, Ph.D. thesis, Massachusetts Institute of Technology (2013).

Google Scholar

[44] I. E. Reis, S. Riepe, W. Koch, J. Bauer, S. Beljakowa, O. Breitenstein, H. Habenicht, D. Kresner-Kiel, G. Pensl, J. Schon, W. Seifert, Effect of impurities on solar cell parameters in intentionally contaminated multicrystalline silicon, in: proc. 24th EUPVSEC, Hamburg, Germany, 2009, pp.2144-2148.

Google Scholar

[45] B. Michl, J. Schon, W. Warta, M. C. Schubert, The impact of different diffusion temperature profiles on iron concentrations and carrier lifetimes in multicrystalline silicon wafers, IEEE J. Photovoltaics 3 (2012) 635 - 640.

DOI: 10.1109/jphotov.2012.2231726

Google Scholar

[46] D. Macdonald, S. Phang, F. Rougieux, S. Lim, D. Paterson, D. Howard, M. D. de Jonge, C. Ryan, Ironrich particles in heavily contaminated multicrystalline silicon wafers and their response to phosphorus gettering, Semiconductor Science and Technology 27 (12) (2012).

DOI: 10.1088/0268-1242/27/12/125016

Google Scholar

[47] A. E. Morishige, D. P. Fenning, J. Hofstetter, D. M. Powell, T. Buonassisi, Enhanced phosphorus diffusion gettering by temperature optimization, in: 38th IEEE PVSC, Austin, TX, (2012).

DOI: 10.1109/pvsc.2012.6318036

Google Scholar

[48] A. E. Morishige, Master's thesis (unpublished).

Google Scholar

[49] C. Donolato, Modeling the effect of dislocations on the minority carrier diffusion length of a semiconductor, J. Appl. Phys. 84 (5) (1998) 2656-2664.

DOI: 10.1063/1.368378

Google Scholar

[50] G. Stokkan, S. Riepe, O. Lohne, W. Warta, Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon, J. Appl. Phys. 101 (5) (2007) 053515.

DOI: 10.1063/1.2435815

Google Scholar

[51] M. Rinio, S. Peters, M. Werner, A. Lawerenz, H. Muller, Measurement of the normalized recombination strength of dislocations in multicrystalline silicon solar cells, in: Solid State Phenomena 82 - 84, 2002, pp.701-706.

DOI: 10.4028/www.scientific.net/ssp.82-84.701

Google Scholar

[52] M. I. Bertoni, D. P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, T. Buonassisi, Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells, Energy & Environmental Science 4 (10) (2011) 4252-4257.

DOI: 10.1039/c1ee02083h

Google Scholar

[53] J. Hofstetter, D. P. Fenning, D. B. Needleman, D. M. Powell, A. E. Morishige, S. Castellanos, T. Buonassisi, Correlation of the interstitial iron concentration and the recombination strength of dislocations in multicrystalline silicon, in: visual presentation at SiliconPV 2013, Hameln, Germany, (2013).

Google Scholar

[54] C. Reimann, G. Müller, J. Friedrich, K. Lauer, A. Simonis, H. Wätzig, S. Krehan, R. Hartmann, A. Kruse, Systematic characterization of multi-crystalline silicon string ribbon wafer, Journal of Crystal Growth 361 (2012) 38 - 43.

DOI: 10.1016/j.jcrysgro.2012.08.022

Google Scholar

[55] D. P. Fenning, A. S. Zuschlag, A. Frey, J. Hofstetter, M. I. Bertoni, G. Hahn, T. Buonassisi, Investigation of lifetime-limiting defects after high-temperature phosphorus diffusion in silicon solar cell materials, IEEE J. Photovoltaics (2013).

DOI: 10.1109/jphotov.2014.2312485

Google Scholar

[56] M. Seibt, R. Khalil, V. Kveder, W. Schroter, Electronic states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell materials, Appl. Phys. A 96 (2009) 235-253.

DOI: 10.1007/s00339-008-5027-8

Google Scholar

[57] H. J. Choi, M. I. Bertoni, J. Hofstetter, D. P. Fenning, D. M. Powell, S. Castellanos, T. Buonassisi, Dislocation density reduction during impurity gettering in multicrystalline silicon, IEEE J. Photovoltaics 3 (2012) 189 - 198.

DOI: 10.1109/jphotov.2012.2219851

Google Scholar