Analysis of Coefficient of Thermal Expansion in Carbon Black Filled PDMS Composite

Article Preview

Abstract:

Polymer composites are gaining attention due to their superior thermal properties. Especially carbon black /carbon nanotubes/ graphene filled polymer composites are used in energy harvesting, thermal actuators and MEMS. The coefficient of thermal expansion (CTE) is one of the most important properties in the polymer composite. In the present study, thermal expansion of polydimethylsiloxane (PDMS) matrix is filled with carbon black particle of varied volume fraction is modeled. Two-dimensional finite element (FE) model is computed in order to explain the thermal expansion behavior of the polymer composite and same is carried out for ambient to 70 K temperature. A 2D regular arrangement of circular particle packing model is set up and simulated. The FE model predicts that filler geometry has a little effect on the thermal expansion than the percentage of filler in the composite. Thermal expansion of composite is compared with the theoretical model. It shows that the CTE of composite reduces as the filler percentage increase, also gives good agreement in the both models. Hence, it is found that the addition of carbon black to the polymer composite could make it perform significantly better in thermal expansion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-244

Citation:

Online since:

February 2020

Export:

Price:

* - Corresponding Author

[1] Kováčik, J., & Emmer, Š. (2011). Thermal expansion of Cu/graphite composites: effect of the copper coating. Kovove Mater, 49, 411-416.

DOI: 10.4149/km_2011_6_411

Google Scholar

[2] Yilmaz, S., & Dunand, D. C. (2004). Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu–60vol% ZrW2O8 composite. Composites Science and Technology, 64(12), 1895-1898.

DOI: 10.1016/j.compscitech.2004.02.002

Google Scholar

[3] Lim, H., Park, T., Na, J., Park, C., Kim, B., & Kim, E. (2017). Construction of a photothermal Venus flytrap from conductive polymer bimorphs. NPG Asia Materials, 9(7), e399.

DOI: 10.1038/am.2017.101

Google Scholar

[4] Kim, D. H., Oh, K. S., & Park, S. (2009). Design and analysis of a twisting-type thermal actuator for micromirrors. Journal of mechanical science and technology, 23(6), 1536-1543.

DOI: 10.1007/s12206-009-0113-1

Google Scholar

[5] Kim, S. H., Lima, M. D., Kozlov, M. E., Haines, C. S., Spinks, G. M., Aziz, S., & Qian, D. (2015). Harvesting temperature fluctuations as electrical energy using torsional and tensile polymer muscles. Energy & Environmental Science, 8(11), 3336-3344.

DOI: 10.1039/c5ee02219c

Google Scholar

[6] Takenaka, K. (2012). Negative thermal expansion materials: technological key for control of thermal expansion. Science and technology of advanced materials, 13(1), 013001.

DOI: 10.1088/1468-6996/13/1/013001

Google Scholar

[7] Tang, H., Piao, J., Chen, X., Luo, Y., & Li, S. (1993). The positive temperature coefficient phenomenon of vinyl polymer/CB composites. Journal of applied polymer science, 48(10), 1795-1800.

DOI: 10.1002/app.1993.070481013

Google Scholar

[8] Tripathi, D., & Dey, T. K. (2013). Thermal conductivity, coefficient of linear thermal expansion and mechanical properties of LDPE/Ni composites. Indian Journal of Physics, 87(5), 435-445.

DOI: 10.1007/s12648-013-0256-x

Google Scholar

[9] Sullivan, L. M., & Lukehart, C. M. (2005). Zirconium tungstate (ZrW2O8)/polyimide nanocomposites exhibiting reduced coefficient of thermal expansion. Chemistry of materials, 17(8), 2136-2141.

DOI: 10.1021/cm0482737

Google Scholar

[10] Agarwal, B. D., & Broutman, L. J. (1974). Three-dimensional finite element analysis of spherical particle composites. Fibre Science and Technology, 7(1), 63-77.

DOI: 10.1016/0015-0568(74)90006-2

Google Scholar

[11] Dey, T. K., & Tripathi, M. (2010). Thermal properties of silicon powder filled high-density polyethylene composites. Thermochimica Acta, 502(1-2), 35-42.

DOI: 10.1016/j.tca.2010.02.002

Google Scholar

[12] Lin, K., Qiu, S., Lin, B., & Wang, Y. (2015). An Investigation of the Thermal Expansion Coefficient for Resin Concrete with ZrW2O8. Applied Sciences, 5(3), 367-379.

DOI: 10.3390/app5030367

Google Scholar

[13] Abueidda, D. W., Dalaq, A. S., Al-Rub, R. K. A., & Jasiuk, I. (2015). Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites. Composite Structures, 133, 85-97.

DOI: 10.1016/j.compstruct.2015.06.082

Google Scholar

[14] Tani, J. I., Kimura, H., Hirota, K., & Kido, H. (2007). Thermal expansion and mechanical properties of phenolic resin/ZrW2O8 composites. Journal of applied polymer science, 106(5), 3343-3347.

DOI: 10.1002/app.27025

Google Scholar

[15] Karch, C. (2014). Micromechanical analysis of thermal expansion coefficients. Modeling and Numerical Simulation of Material Science, 4(03), 104.

DOI: 10.4236/mnsms.2014.43012

Google Scholar