Superior Short Circuit Performance of 1.2kV SiC JBSFETs Compared to 1.2kV SiC MOSFETs

Article Preview

Abstract:

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

797-800

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] P. Godignon, V. Soler, M. Cabello, J. Montserrat, J. Rebollo, L. Knoll, E. Bianda, A. Mihaila, New Trends in High Voltage MOSFET Based on Wide bandgap materials,, Int. Semicond. Conf., Oct (2017).

DOI: 10.1109/smicnd.2017.8101143

Google Scholar

[2] X. Huang, L. Fursin, A. Bhalla, W. Simon, J. Chris Dries, Design and Fabrication of 3.3kV SiC MOSFETs for Industrial Applications,, Int. Symp. on Power Semiconductor Devices and ICs, May (2017).

DOI: 10.23919/ispsd.2017.7988908

Google Scholar

[3] W. Sung, B. J. Baliga, On developing one-chip integration of 1.2kV SiC MOSFET and JBS diode (JBSFET),, IEEE Trans. on Industrial Electronics, 64-10, Oct 2017, pp.8206-8212.

DOI: 10.1109/tie.2017.2696515

Google Scholar

[4] B. J. Baliga, K. Han, J. Harmon, A. Tucker, S. Syed, W. Sung, PRESiCE: Process Engineered for manufacturing SiC Electronic Devices,, Int. Conf. Silicon Carbide and Related Materials, Sept (2017).

DOI: 10.4028/www.scientific.net/msf.924.523

Google Scholar

[5] Information on https://www.wolfspeed.com/c2m0160120d.

Google Scholar

[6] B. J. Baliga, Fundamentals of power semiconductor devices,, Springer Science and Business Media, New York, NY, USA, (2008).

Google Scholar

[7] Y. Nakao, S. Watanabe, N. Miura, M. Imaizumi, T. Oomori, Investigation into Short-Circuit Ruggedness of 1.2kV 4H-SiC MOSFETs,, Int. Conf. Silicon Carbide and Related Materials, Sept (2017).

DOI: 10.4028/www.scientific.net/msf.600-603.1123

Google Scholar

[8] H. Hatta, T. Tominaga, S. Hino, N. Miura, S. Tomohisa, S. Yamakawa, Suppression of short-circuit current with embedded source resistance in SiC-MOSFET,, Int. Conf. Silicon Carbide and Related Materials, Sept (2017).

DOI: 10.4028/www.scientific.net/msf.924.727

Google Scholar

[9] S. Bontemps, A. Basler, P. Doumerge, Evaluation of the need for SiC SBD in parallel with SiC MOSFETs in a module phase leg configuration,, Int. Conf. Power Electronics, Intelligent Motion, Ren. Energy and Energy Management, May (2015).

Google Scholar

[10] Information on https://www.wolfspeed.com/power.products/bare-die-4/cpw4-1200-s005b.

Google Scholar