Electrical Characterization of MOCVD Grown Single Crystalline AlN Thin Films on 4H-SiC

Article Preview

Abstract:

We report on a very low density of interface traps at the AlN/4H-SiC interface estimated from capacitance-voltage (CV) analysis of metal-insulator-semiconductor (MIS) capacitors. Single crystalline aluminum nitride (AlN) films are grown by metal organic chemical vapor deposition (MOCVD). Current-voltage (IV) analysis shows that the breakdown electric field across the AlN dielectric is 3 MV/cm. By depositing an additional SiO2 layer on top of the AlN layer it is possible to increase the breakdown voltage of the MIS capacitors significantly without having pronounced impact on the quality of the AlN/SiC interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

460-464

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] S. Dimitrijev, J. Han, H. A. Moghadam, and A. Aminbeidokhti, MRS Bull. 40, 399–405 (2015).

Google Scholar

[2] T. Kimoto, Japanese J. Appl. Phys. 54, 040103 (2015) and references therein.

Google Scholar

[3] C. M. Zetterling, M. Östling, K. Wongchotigul, M. G. Spencer, X. Tang, C. I. Harris, N. Nordell, and S. S. Wong, J. Appl. Phys. 82, 2990 (1997).

DOI: 10.1063/1.366136

Google Scholar

[4] C. M. Zetterling, M. Östling, H. Yano, T. Kimoto, H. Matsunami, K. Linthicum, and R. F. Davis, Mater. Sci. Forum 338-342, 1315 (2000).

DOI: 10.4028/www.scientific.net/msf.338-342.1315

Google Scholar

[5] J. Suda, and H. Matsunami, US Patent 2006/0194379 A1 (2006).

Google Scholar

[6] A. Taube, S. Gierałtowska, T. Gutt, T. Małachowski, I. Pasternak, T. Wojciechowski, W. Rzodkiewicz, M. Sawicki, and A. Piotrowska, Acta Physica Polonica A 119, 696 (2011).

DOI: 10.12693/aphyspola.119.696

Google Scholar

[7] S. S. Suvanam, M. Usman, D. Martin, M. G. Yazdi, M. Linnarsson, A. Tempez, M. Götelid, and A. Hallén, Appl. Surface Science 433, 108 (2018).

DOI: 10.1016/j.apsusc.2017.10.006

Google Scholar

[8] M. Horita, M. Noborio, T. Kimoto, and J. Suda, IEEE Trans. Electron Devices 35, 339 (2014).

Google Scholar

[9] N. Onojima, J. Suda, and H. Matsunami, Appl. Phys. Lett. 80, 76 (2002).

Google Scholar

[10] N. Onojima, J. Kaido, J. Suda, T. Kimoto, and H. Matsunami, Mater. Sci. Forum 457-460, 1569 (2004).

DOI: 10.4028/www.scientific.net/msf.457-460.1569

Google Scholar

[11] C. M. Zetterling, M. Östling, N. Nordell, O. Schön, and M. Deschler, Appl. Phys. Lett. 70, 3549 (1997).

DOI: 10.1063/1.119229

Google Scholar

[12] J.T. Chen, J. W. Pomeroy, N. Rorsman, C. Xia, C. Virojanadara, U. Forsberg, M. Kuball, and E. Janzén, J. Crystal Growth 428, 54 (2015).

DOI: 10.1016/j.jcrysgro.2015.07.021

Google Scholar

[13] L. Gordon, J. L. Lyons, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 89, 085204 (2014).

Google Scholar