Hydrothermal Synthesis of Zeolite a Using Non-Calcined Diatomite

Article Preview

Abstract:

Optimization and reduction of zeolite A synthesis costs are the focus of several studies. Attention has been given to the use of residues and natural materials rich in Si and Al, such as diatomite. Diatomite needs to be calcined above 500°C to be used, which increases processing costs. This study aimed at evaluating the use of diatomite without calcination in preparing zeolite A. Alkaline hydrothermal synthesis melting and 24 h of crystallization were carried out. The materials were characterized by XRD (X-ray powder diffraction), XRF (X-ray fluorescence), BET (N2 physisorption) and SEM (Scanning Electron Microscopy). XRD data and refinement show that the obtained material presents 99.84% crystallinity, average crystallite size of 54.92 nm, and a semi-quantitative percentage of 79% zeolite A. SiO2 and Al2O3 contents in the prepared sample proved the ratio SiO2/Al2O3 = 2. The micrographies show cubic particles and agglomerated sodalite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

September 2018

Export:

Price:

[1] A.B. Luz, F.A. F. Lins: Rochas e Minerais Industriais - Usos e Especificações (CETEM/MTC Rio de Janeiro, 2005).

Google Scholar

[2] K. Jabbour, N. El Hassan, A. Davidson, P. Massiani, S. Casale: Chemical Engineering Journal Vol. 264 (2015), p.351.

Google Scholar

[3] C.R. Nascimento, E.M.O. Sobrinho, R.B. Assis, R.F. Fagundes, L. Bieseki, S.B.C. Pergher: Cerâmica Vol. 60 (2014), p.63.

DOI: 10.1590/s0366-69132014000100009

Google Scholar

[4] A. Molina, C. Poole: Minerals Engineering Vol. 17 (2004), p.167.

Google Scholar

[5] A.A.B. Maia, E. Saldanha, R.S. Angélica, C.A.G. Souza, R.F. Neves: Cerâmica Vol. 53 (2007), p.319.

Google Scholar

[6] A.A.B. Maia, R.S. Angélica, R.F. Neves: Cerâmica Vol. 54 (2008), p.345.

Google Scholar

[7] E.A. Hildebrando, R.S. Angélica, R.F. Neves, F.R. Valenzuela-Diaz: Cerâmica Vol. 58 (2012), p.453.

DOI: 10.1590/s0366-69132012000400006

Google Scholar

[8] C.G. Moraes, E.C. Rodrigues, R.S. Angélica, E.N. Macêdo, R.F. Neves: Cerâmica Vol. 59 (2013), p.563.

Google Scholar

[9] C.A.F. Rocha Junior, S.C.A. Santos, C.A.G. Souza, R.S. Angélica, R.F. Neves: Cerâmica Vol. 58 (2012), p.43.

Google Scholar

[10] L. Alexander, H.P. Klug: Journal of Applied Physics Vol. 21 (1950), p.137.

Google Scholar

[11] M. Alkan, Ç. Hopa, Z. Yilmaz, H. Güler: Microporous and Mesoporous Materials Vol. 86 (2005), p.176.

Google Scholar

[12] R.T. Rigo, S.B.C. Pergher, D.I. Petkowicz, J.H.Z.d. Santos: Química Nova Vol. 32 (2009), p.21.

Google Scholar

[13] H.L. Chang, W.H. Shih:Industrial & Engineering Chemistry Research Vol. 39 (2000), p.4185.

Google Scholar

[14] N.R.C. Fernandes Machado, D.M. Malachini Miotto: Fuel Vol. 84 (2005), p.2289.

Google Scholar