Microstructural Changes and Thermal Stability of A201, 319s and 2618 Aluminum Alloys during Thermal Exposure

Article Preview

Abstract:

Turbocharger compressor wheels are often made of 3XX cast aluminum alloys and forged 2618 alloy. These age hardening aluminum alloys have high strength-to-weight ratio at ambient temperature. However, the strength of the aluminum alloys decreases rapidly when applied at high temperatures, such as for turbochargers where application temperature can be above 200 °C. The major reason is that the fine precipitated phases coarsen rapidly tending to their equilibrium states. The thermal stability of the 319s-T61, A201-T71 and 2618-T6 alloys were compared in this paper. The three alloys were exposed at 200 °C for 100 h during heat treatment. Hardness, tensile tests and TEM were carried out to investigate the mechanical properties and microstructure variation of these three alloys. The results indicated that the A201 alloy exhibited the best thermal stability among the three alloys and 319s alloy is the weakest one. TEM observation showed that with the increase of the exposure time, the strengthening precipitates phase θ′ in A201/319s alloys and S′ in 2618 alloy coarsened and then transformed to stable θ phase and S phase, respectively, while the primary strengthening phase Ω in A201 remained stable, which may be contributed the higher thermal stability of A201 than 319s and 2618.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-62

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] Q Zhu, S.P. Midson, Semi-solid moulding: Competition to cast and machine from forging in making automotive complex components, Trans Nonferrous Met Soc China. 20. S3 (2010): 1042-1047.

DOI: 10.1016/s1003-6326(10)60628-0

Google Scholar

[2] G. Wallace, A.P. Jackson, Q Zhu, S.P. Midson, High-quality aluminum turbocharger impellers produced by thixocasting, Trans Nonferrous Met Soc China. 20. 9 (2010): 1786-1791.

DOI: 10.1016/s1003-6326(09)60375-7

Google Scholar

[3] Q Zhu, S.P. Midson, W. M Chng, H. V Atkinson, Casting and Heat Treatment of Turbocharger Impellers Thixocast from Alloy 201, Solid State Phenom. (2013) 192-556.

DOI: 10.4028/www.scientific.net/ssp.192-193.556

Google Scholar

[4] A.K. Mukhopadhyay, On the nature of the second phase particles present in an as-cast Al-Cu-Mg-Ag alloy, Scr Mater. 41. 6 (1999) 667-672.

DOI: 10.1016/s1359-6462(99)00110-4

Google Scholar

[5] J.E. Hatch, Aluminum: properties and physical metallurgy, Ohio: ASM International. (1984) 323.

Google Scholar

[6] D Liu, H.V. Atkinson, P Kapranos, W Jirattiticharoean, H Jones, Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys, Mater Sci Eng A. 361. 1–2 (2003) 213-224.

DOI: 10.1016/s0921-5093(03)00528-8

Google Scholar

[7] I.J. Polmear, The Effects of small additions of silver on aging of some aluminum alloys, Trans Metall Soc AIME. 230. 6 (1964) 1331.

Google Scholar

[8] K.M. Knowles, W.M. Stobbs, The structure of {111} age-hardening precipitates in Al-Cu-Mg-Ag alloys, Acta Crystallogr Sect B, Struct Sci. 44. 3 (2010) 207-227.

DOI: 10.1107/s0108768187012308

Google Scholar

[9] B.C. Muddle, I.J. Polmear, The precipitate Ω phase in Al-Cu-Mg-Ag alloys, Acta Metall. 37. 3 (1989) 777-789.

DOI: 10.1016/0001-6160(89)90005-9

Google Scholar

[10] S.P. Ringer, K Hono, I.J. Polmear, T Sakurai, Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu: Mg ratios, Acta Mater. 44. 44 (1996) 1883-1898.

DOI: 10.1016/1359-6454(95)00314-2

Google Scholar

[11] C.H. Chang, S.L. Lee, J.C. Lin, R.R. Jeng, The Effect of Silver Content on the Precipitation of the Al-4. 6Cu-0. 3Mg Alloy, Mater Trans. 46. 2 (2005) 236-240.

DOI: 10.2320/matertrans.46.236

Google Scholar

[12] E Sjölander, S Seifeddine, The heat treatment of Al-Si-Cu-Mg casting alloys, J Mater Process Technol. 210. 10 (2010) 1249-1259.

DOI: 10.1016/j.jmatprotec.2010.03.020

Google Scholar

[13] X.G. Hu, Q Zhu, H.X. Lu, F Zhang, D.Q. Li, Microstructural evolution and thixoformability of semi-solid aluminum 319s alloy during re-melting, J Alloys Compd. 649 (2015) 204-210.

DOI: 10.1016/j.jallcom.2015.07.121

Google Scholar

[14] D.Q. Li, X.K. Liang, F.B. Yang, Y.F. He, F Zhang, Q Zhu, S.M. Zhang, Evolution of Microstructure and Mechanical Properties of the Thixo-Diecast 319s Alloy during Heat Treatment, Mater Sci Forum. 765 (2013) 511-515.

DOI: 10.4028/www.scientific.net/msf.765.511

Google Scholar

[15] I.N.A. Oguocha, S Yannacopoulos, Y Jin, The structure of AlxFeNi phase in Al-Cu-Mg-Fe-Ni alloy (AA2618), J Mater Sci. 31. 21 (1996) 5615-5621.

DOI: 10.1007/bf01160806

Google Scholar

[16] S.C. Bergsma, X Li, M.E. Kassner, Effects of thermal processing and copper additions on the mechanical properties of aluminum alloy ingot AA2618, J Mater Eng Perform. 5. 1 (1996) 100-102.

DOI: 10.1007/bf02647276

Google Scholar

[17] J.H. Wang, D.Q. Yi, Preparation and properties of alloy 2618 reinforced by submicron AIN particles, J Mater Eng Perform. 15. 5 (2006) 596-600.

Google Scholar

[18] F Nový, M Janeček, R Král, Microstructure changes in a 2618 aluminium alloy during ageing and creep, J Alloys Compd. 487. 1–2 (2009) 146-151.

DOI: 10.1016/j.jallcom.2009.08.014

Google Scholar

[19] A.K. Mukhopadhyay, On the nature of the second phase particles present in an as-cast Al-Cu-Mg-Ag alloy, Scr Mater. 41. 6 (1999) 667-672.

DOI: 10.1016/s1359-6462(99)00110-4

Google Scholar

[20] Y.T. Chen, G.Y. Nieh, J.H. Wang, T.F. Wu, S.L. Lee, Effects of Cu/Mg ratio and heat treatment on microstructures and mechanical properties of Al–4. 6Cu–Mg–0. 5Ag alloys, Mater Chem Phys. 162 (2015) 764-770.

DOI: 10.1016/j.matchemphys.2015.07.001

Google Scholar

[21] A.M.A. Mohamed, F.H. Samuel, S.A. Kahtani, Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys, Mater Sci Eng A. 543. 5 (2012) 22-34.

DOI: 10.1016/j.msea.2012.02.032

Google Scholar

[22] H Yang, S Ji, W Yang, Y Wang, Z Fan, Effect of Mg level on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys, Mater Sci Eng A. 642. 5 (2015) 340-350.

DOI: 10.1016/j.msea.2015.07.008

Google Scholar

[23] J.Y. Hwang, R Banerjee, H.W. Doty, M.J. Kaufman, The effect of Mg on the structure and properties of Type 319 aluminum casting alloys, Acta Mater. 57. 4 (2009) 1308-1317.

DOI: 10.1016/j.actamat.2008.11.021

Google Scholar

[24] I.J. Polmear, M.J. Couper, Design and development of an experimental wrought aluminum alloy for use at elevated temperatures, Metall Trans A. 19. 4 (1988) 1027-1035.

DOI: 10.1007/bf02628387

Google Scholar

[25] S.P. Ringer, W Yeung, B.C. Muddle, I.J. Polmear, Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures, Acta Metall Mater. 42. 5 (1994) 1715-1725.

DOI: 10.1016/0956-7151(94)90381-6

Google Scholar

[26] Y.C. Chang, J.M. Howe, Composition and stability of Ω phase in an Al-Cu-Mg-Ag Alloy, Metalll Trans A. 24. 7 (1993) 1461-1470.

DOI: 10.1007/bf02646587

Google Scholar

[27] C.R. Hutchinson, X Fan, S.J. Pennycook, G.J. Shiflet, On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys, Acta Mater. 49. 14 (2001) 2827-2841.

DOI: 10.1016/s1359-6454(01)00155-0

Google Scholar

[28] S. Singh, D.B. Goel, Influence of thermomechanical ageing on tensile properties of 2014 aluminum alloy, J Mater Sci. 25. 9 (1990) 3894-3900.

DOI: 10.1007/bf00582456

Google Scholar