Effect of Annealing on Valence Electronic States Related to Mn Ions of La0.67Sr0.33MnO3 Films

Article Preview

Abstract:

La0.67Sr0.33MnO3 (LSMO) films were prepared on SrTiO3 single-crystal substrates by the pulsed laser deposition method. X-ray photoelectron spectra (XPS) were measured for the LSMO films as-prepared and annealed in vacuum, respectively. Multiple peak fitting for Mn 2p3/2 XPS spectra shows that Mn3+ and Mn4+ proportionally decrease on the surface of the LSMO film annealed in vacuum compared with the as-prepared film. And the saturation magnetization (Ms) slightly decreases. Analysis indicates that a small amount of Mn2+, as surface defects of LSMO films, hardly changed after vacuum annealing. The total of Mn3+, Mn4+ and the low-binding energy peak (LEP) remains unchanged before and after annealing in vacuum, which suggests that LEP should be related with Mn3+ and Mn4+ when the magnetic properties are considered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

March 2017

Export:

Price:

* - Corresponding Author

[1] V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, et al., Science 327 (2010) 1106.

DOI: 10.1126/science.1184028

Google Scholar

[2] G. Kim, D. Mazumdar, A. Gupta, Appl. Phys. Lett. 102 (2013) 052908.

Google Scholar

[3] S. Jain, H. Sharma, A.K. Shukla, C.V. Tomy, V.R. Palkar, A. Tulapurkar, Physica B 448 (2014) 103-106.

DOI: 10.1016/j.physb.2014.02.061

Google Scholar

[4] H.J. Mao, C. Song, L.R. Xiao, S. Gao, B. Cui, J.J. Peng, F. Li, F. Pan, Phys. Chem. Chem. Phys. 17 (2015) 10146-10150.

DOI: 10.1039/c5cp00421g

Google Scholar

[5] T. Shiota, K. Sato, J.S. Cross, N. Wakiya, S. Tachikawa, A. Ohnishi, O. Sakurai, K. Shinozaki, Thin Solid Films 593 (2015) 1-4.

DOI: 10.1016/j.tsf.2015.09.027

Google Scholar

[6] A. Vailionis, H. Boschker, Z. Liao, J.R. A. Smit, G. Rijnders, M. Huijben, G. Koster, Appl. Phys. Lett. 105 (2014) 131906.

Google Scholar

[7] A. Kumar, D. Barrionuevo, N. Ortega, A.K. Shukla, S. Shannigrahi, J.F. Scott, R.S. Katiyar, Appl. Phys. Lett. 106 (2015) 132901.

DOI: 10.1063/1.4919060

Google Scholar

[8] M. Huijben, Y.H. Liu, H. Boschker, V. Lauter, R. Egoavil, J. Verbeeck, S.G.E. Velthuis, G. Rijnders, G. Koster, Adv. Mater. Interfaces 2 (2015) 1400416.

DOI: 10.1002/admi.201400416

Google Scholar

[9] H.W. Nesbitt, D. Banerjee, Am. Mineral. 83 (1998) 305-315.

Google Scholar

[10] H. Boschker, M. Huijben, A. Vailionis, J. Verbeeck, S. van Aert, M. Luysberg, S. Bals, G. van Tendeloo, E.P. Houwman, G. Koster, et al., J. Phys. D: Appl. Phys. 44 (2011) 205001.

DOI: 10.1088/0022-3727/44/20/205001

Google Scholar

[11] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R. St.C. Smart, Appl. Surf. Sci., 257 (2011) 2717-2730.

Google Scholar

[12] M.P. de Jong, I. Bergenti, V.A. Dediu, M. Fahlman, M. Marsi, C. Taliani, Phys. Rev. B 71 (2005) 014434.

Google Scholar

[13] M.P. de Jong, I. Bergenti, W. Osikowicz, R. Friedlein, V.A. Dediu, C. Taliani, W.R. Salaneck, Phys. Rev. B 73 (2006) 052403.

Google Scholar

[14] T. Hishida, K. Ohbayashi, T. Saitoh, J Appl. Phys. 113 (2013) 043710.

Google Scholar

[15] D. Liu, W. Liu, Ceram. Inter. 37 (2011) 3531-3534.

Google Scholar

[16] C. Zener, Phys. Rev. 82 (1951) 403.

Google Scholar

[17] C.L. Prajapat, P. Kalita, P.U. Sastry, M.R. Singh, S.K. Gupta, G. Ravikumar, Physica B 448 (2014) 100–102.

Google Scholar

[18] Z. Li, M. Bosman, Z. Yang, P. Ren, L. Wang, L. Cao, X. Yu, C. Ke, M.B.H. Breese, A. Rusydi, W. Zhu, Z. Dong, Y.L. Foo, Adv. Func. Mater. 22 (2012) 4312.

DOI: 10.1002/adfm.201200143

Google Scholar

[19] K. Horiba, M. Taguchi, A. Chainani, Y. Takata, E. Ikenaga, D. Miwa,Y. Nishino, K. Tamasaku, M. Awaji, A. Takeuchi, et al., Phys. Rev. Lett. 93 (2004) 236401.

Google Scholar