Synthesis of La10Si6-2xBi2xO27-x as Possible Electrolyte Materials for Solid Oxide Fuel Cells

Article Preview

Abstract:

La10Si6-2xBi2xO27-x (x = 0.22, 0.46 and 0.72) ceramics have been synthesized by the solid-state reaction method. The calcination temperature of La10Si6-2xBi2xO27-x was 900°C for 4 hours and the sintering temperature was 1500°C for 5 hours with the heating and cooling rates of 10°C per minute. Crystal structures of La10Si6-2xBi2xO27-x have been characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Room temperature XRD patterns of La10Si6-2xBi2xO27-x ceramics doped with Bi3+ show hexagonal apatite structure with space group P63/m as the primary compound with minor appearance of La2SiO5 impurity as the secondary compound. As the bismuth oxide content increased the La2SiO5 impurity also increased. La10Si5.56Bi0.44O26.78 has the highest bulk density of 5.2 gcm-3 and good microstructure compared to La10Si5.08Bi0.92O26.54 and La10Si4.56Bi1.44O26.28.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-177

Citation:

Online since:

March 2017

Export:

Price:

* - Corresponding Author

[1] N. Radenahmad, A. Afif, P.I. Petra, S.M. H Rahman, S.G. Eriksson and A.K. Azad: Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review, Ren. and Sustain. Ener. Rev. Vol. 57 (2016), p.1347.

DOI: 10.1016/j.rser.2015.12.103

Google Scholar

[2] A. Afif, N. Radenahmad, Q. Cheok, S. Shams, J.H. Kim and A.K. Azad: Ammonia-fed fuel cells: a comprehensive review, Ren. and Sustain. Ener. Rev. Vol. 60 (2016), p.822.

DOI: 10.1016/j.rser.2016.01.120

Google Scholar

[3] A.C. Johnson, B.K. Lai, H. Xiong and S. Ramanathan: An experimental investigation into micro-fabricated solid oxide fuel cells with ultra-thin La0. 6Sr0. 4Co0. 8Fe0. 2O3 cathodes and yttria-doped zirconia electrolyte films, J. Power Sources Vol. 186(2) (2009).

DOI: 10.1016/j.jpowsour.2008.10.021

Google Scholar

[4] K. Kobayashi, Y. Matsushita, N. Igawa, F. Izumi, C. Nishimura, S. Miyoshi and S. Yamaguchi: Water-based sol–gel synthesis and crystal structure refinement of lanthanum silicate apatite, Solid State Ionics Vol. 179(38) (2008), p.2209.

DOI: 10.1016/j.ssi.2008.07.023

Google Scholar

[5] B. Zhu: Functional ceria–salt-composite materials for advanced ITSOFC applications, J. Power Sources Vol. 114(1) (2003), p.1.

DOI: 10.1016/s0378-7753(02)00592-x

Google Scholar

[6] S.H. Jo, P. Muralidharan and D.K. Kim: Electrical characterization of dense and porous nanocrystalline Gd-doped ceria electrolytes, Solid State Ionics Vol. 178(39–40) (2008), p. (1990).

DOI: 10.1016/j.ssi.2007.12.076

Google Scholar

[7] W. Jung, J.L. Hertz and H.L. Tuller: Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ), Acta Materialia Vol. 57(5) (2009), p.1399.

DOI: 10.1016/j.actamat.2008.11.028

Google Scholar

[8] D.R. Ou, T. Mori, F. Ye, M. Takahashi, J. Zou and J. Drennan: Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences, Acta Materialia Vol. 54(14) (2006), p.3737.

DOI: 10.1016/j.actamat.2006.04.003

Google Scholar

[9] Y. Higuchi, M. Sugawara, K. Onishi, M. Sakamoto and S. Nakayama: Oxide ionic conductivities of apatite-type lanthanum silicates and germanates and their possibilities as an electrolyte of lower temperature operating SOFC, Ceram. International Vol. 36(3) (2010).

DOI: 10.1016/j.ceramint.2009.10.022

Google Scholar

[10] A. Chesnaud, G. Dezanneau, C. Estournès, C. Bogicevic, F. Karolak, S. Geiger and G. Geneste: Influence of synthesis route and composition on electrical properties of La9. 33+xSi6O26+3x/2 oxy-apatite compounds, Solid State Ionics Vol. 179(33–34) (2008).

DOI: 10.1016/j.ssi.2008.04.035

Google Scholar

[11] E. Béchade, I. Julien, T. Iwata, O. Masson, P. Thomas, E. Champion and K. Fukuda: Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte, J. Euro. Ceram. Soc. Vol. 28(14) (2008), p.2717.

DOI: 10.1016/j.jeurceramsoc.2008.03.045

Google Scholar

[12] Y. Zhang, Z. Su, A.K. Azad, W. Zhou, J.T.S. Irvine: Directly imaging interstitial oxygen in silicate apatite, Adv. Ener. Mat. Vol. 2 (2012), p.316.

DOI: 10.1002/aenm.201100607

Google Scholar

[13] Z.G. Liu, J.H. Ouyang, K.N. Sun and X.L. Xia: Effect of Gd and Yb co-doping on structure and electrical conductivity of the Sm2Zr2O7 pyrochlore, J. Power Sources Vol. 195(21) (2010), p.7225.

DOI: 10.1016/j.jpowsour.2010.05.064

Google Scholar

[14] L. Li and J.C. Nino: Ionic conductivity across the disorder–order phase transition in the SmO1. 5–CeO2 system, J. Euro. Ceram. Society Vol. 32(13) (2012), p.3543.

DOI: 10.1016/j.jeurceramsoc.2012.05.009

Google Scholar

[15] R. Wu, W. Pan, X. Ren, C. Wan, Z. Qu and A. Du: An extremely low thermal conduction ceramic: RE9. 33(SiO4)6O2 silicate oxyapatite, Acta Materialia Vol. 60(15) (2012), p.5536.

DOI: 10.1016/j.actamat.2012.06.051

Google Scholar

[16] E. Kendrick and P.R. Slater: Synthesis of Ga-doped Ge-based apatites: Effect of dopant and cell symmetry on oxide ion conductivity, Mater. Res. Bull. Vol. 43(12) (2008), p.3627.

DOI: 10.1016/j.materresbull.2008.01.017

Google Scholar

[17] S. Chefi, A. Madani, H. Boussetta, C. Roux and A. Hammou: Electrical properties of Al-doped oxyapatites at intermediate temperature, J. Power Sources Vol. 177 (2008), p.464.

DOI: 10.1016/j.jpowsour.2007.11.091

Google Scholar

[18] D.D.Y. Setsoafia, P. Hing, S.C. Jung, A.K. Azad and C.M. Lim: Sol–gel synthesis and characterization of Zn2+ and Mg2+ doped La10Si6O27 electrolytes for solid oxide fuel cells, Solid State Sci. Vol. 48 (2015), p.163.

DOI: 10.1016/j.solidstatesciences.2015.08.001

Google Scholar

[19] S. Tao and J.T. S Irvine: Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process, Mater. Res. Bull. Vol. 36(7-8) (2001), p.1245.

DOI: 10.1016/s0025-5408(01)00625-0

Google Scholar

[20] S.P. Jiang, L. Zhang, H.Q. He, R.K. Yap and Y. Xiang: Synthesis and characterization of lanthanum silicate apatite by gel-casting route as electrolytes for solid oxide fuel cells, J. Power Sources Vol. 189(2) (2009), p.972.

DOI: 10.1016/j.jpowsour.2008.12.064

Google Scholar

[21] J. Felsche: Rare earth silicates with the apatite structure. J. Solid State Chem. Vol. 5(2) (1972), p.266.

DOI: 10.1016/0022-4596(72)90039-4

Google Scholar

[22] W. Liu, S. Yamaguchi, T. Tsuchiya, S. Miyoshi, K. Kobayashi and W. Pan: Sol–gel synthesis and ionic conductivity of oxyapatite-type La9. 33+xSi6O26+1. 5x, J. Power Sources Vol. 235 (2013), p.62.

DOI: 10.1016/j.jpowsour.2013.01.194

Google Scholar

[23] X.G. Cao and S.P. Jiang: Sinterability and conductivity of barium doped aluminium lanthanum oxyapatite La9. 5Ba0. 5Si5. 5Al0. 5O26. 5 electrolyte of solid oxide fuel cells, J. Alloys and Comp. Vol. 523 (2012), p.127.

DOI: 10.1016/j.jallcom.2012.01.119

Google Scholar

[24] J. Xiang, X.G. Liu, J.H. Ouyang and F.Y. Yan: Ionic conductivity of oxy-apatite La10Si6−xInxO27−δ solid electrolyte ceramics, J. Power Sources Vol. 251 (2014), p.305.

DOI: 10.1016/j.jpowsour.2013.11.074

Google Scholar