Fabrication of Nanotwinned Surface on a Nickel Alloy Using a Developed Diamond Panel with Tips Array

Article Preview

Abstract:

In this study, nanotwinned surface is fabricated on a Nickel alloy by means of a developed diamond panel with tips array. The diamond panel has an area of 10×10 mm2, and is grown using microwave chemical vapor deposition. The diamond tips are submicron in radius and formed on a silicon substrate with an array full of uniformed inverted pyramid pits. The nanotwinned surface is produced under the pressure of 1 MPa exerted by the diamond panel with tips array. Nanotwins are confirmed using transmission electron microscopy. The nanotwinned surface is generated by indention of diamond panel at room temperature using mechanical force, neither material removal nor chemical reagents. This is different from previous reports, in which high temperature, high pressure, chemical reagents or vacuum conditions are employed usually.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

October 2016

Export:

Price:

* - Corresponding Author

[1] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 304 (2004) 422-426.

DOI: 10.1126/science.1092905

Google Scholar

[2] H.T. WANG, N.R. TAO, K. Lu, Strengthening an Austenitic Fe-Mn Steel Using Nanotwinned Austenitic Grains, Acta Mater. 60 (2012) 4027-4040.

DOI: 10.1016/j.actamat.2012.03.035

Google Scholar

[3] Y. J Tian, B. Xu, D.L. Yu, Y.M. Ma, Y.B. Wang et al., Ultrahard nanotwinned cubic boron nitride, Nature, 493 (2013) 385-388.

DOI: 10.1038/nature11728

Google Scholar

[4] X.C. Liu, H.W. Zhang, K. Lu, Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment, Acta Mater. 96 (2015) 24-36.

DOI: 10.1016/j.actamat.2015.06.014

Google Scholar

[5] P. Xie, C.L. Wu, Y. Chen, J.H. Chen, X.B. Yang et al., A nanotwinned surface layer generated by high strain-rate deformation in a TRIP steel, Mater. Design 80 (2015) 144-151.

DOI: 10.1016/j.matdes.2015.05.017

Google Scholar

[6] H.L. Chan, H.H. Ruan, A.Y. Chen, J. Lu, Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment, Acta Mater. 58 (2010) 5086-5096.

DOI: 10.1016/j.actamat.2010.05.044

Google Scholar

[7] A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, J. Lu, The influence of strain rate on the microstructure transition of 304 stainless steel, Acta Mater. 59 (2011) 3697-3709.

DOI: 10.1016/j.actamat.2011.03.005

Google Scholar

[8] L.L. Shaw, A.L. Ortiz, J.C. Villegas, Hall-Petch relationship in a nanotwinned nickel alloy, Scripta Mater. 58 (2008) 951-954.

DOI: 10.1016/j.scriptamat.2008.01.025

Google Scholar

[9] L.L. Shaw, J.C. Villegas, J.Y. Huang, S. Chen, Strengthening via deformation twinning in a nickel alloy, Mater. Sci. Eng. A-Struct. Mater. 480 (2008) 75-83.

DOI: 10.1016/j.msea.2007.06.072

Google Scholar

[10] M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, Deformation twinning in nanocrystalline aluminum, Science 300 (2003) 1275-1277.

DOI: 10.1126/science.1083727

Google Scholar

[11] J.A. Venables, deformed twinning in face-center cubic metals, Philos. Mag. 6, 379 (1961).

Google Scholar

[12] J.P. Hirth and J. Lothe, Theory of dislocations (Krieger Publishing, Malabar, U.K., 1992), 2nd ed.

Google Scholar

[13] Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, A.M. Minor, The nanostructured origin of deformation twinning, Nano lett. 12 (2012) 887-892.

DOI: 10.1021/nl203937t

Google Scholar