Characterization by Fourier Transform Infrared (FTIR) Analysis for Natural Jute Fiber

Article Preview

Abstract:

The world is ever more demanding materials that are not only less intensive in terms of processing energy but also environmentally friendly. Presently, issues like generalized pollution and global warming are renewing the interest of natural materials in substitution for synthetic ones. In fact, natural lignocellulosic fibers are today the subject of a growing number of studies. In particular, the jute fiber, has been investigated by various mechanical and thermal analyses. With the intention to further characterize this fiber, a specific method was considered in this work, the infrared spectroscopy. The Fourier Transform Infrared (FTIR) was used to reveal the most typical absorption bands of specific molecular components of jute fibers, in order to understand the interaction that occurs between the jute fiber and a polymer matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-287

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mat. Eng. Vols. 276/277 (2000), p.1.

Google Scholar

[2] A.K. Mohanty M. Misra and L.T. Drzal: J Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[3] A.N. Netravali and S. Chabba: Mater. Today Vol. 6 (2003), p.22.

Google Scholar

[4] J. Crocker: Mater. Technol. Vols. 2-3 (2008), p.174.

Google Scholar

[5] M.J. John and S. Thomas: Carbohydr. Polym. Vol. 71 (2008), p.343.

Google Scholar

[6] K.G. Satyanarayana, G.C. Arizaga and F. Wypych: Progr. Polym. Sci. Vol. 34 (2009), p.982.

Google Scholar

[7] S. N Monteiro, F.P.D. Lopes, A.S. Ferreira and D.C. O Nascimento: JOM Vol. 61 (2009), p.17.

Google Scholar

[8] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A. B. Bevitori, I. L Silva and L. L Costa: Metal. Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[9] O. Faruk, A.K. Bledzki, H. -P. Fink and M. Sain: Progress in Polymer Science Vol. 37 (2012), p.1552.

Google Scholar

[10] V.K. Thakur, M.K. Thakur and R.K. Gupta: Intl. J. Polym Analys. Charact. Vol. 19 (2014), p.256.

Google Scholar

[11] O. Faruk, A.K. Bledzki, H.P. Fink and M. Sain: Macromolecular Materials and Engineering Vol. 299 (2014), p.9.

Google Scholar

[12] G. Marsh: Mater. Today Vol. (2003), p.36.

Google Scholar

[13] J. Holbery and D. Houston: JOM Vol. 58 (2006), p.80.

Google Scholar

[14] R. Zah, R. Hischier, A.L. Leão and I. Brown: J. Cleaner Production Vol. 15 (2007), p.1032.

Google Scholar

[15] N. Thomas, S.A. Paul, L.A. Pothan and B. Deepa, Natural fibers: structure, properties and applications. In: Kalia, S.; Kaith, B. S.; Kaur, I. (Eds. ), Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer - Verlag: Berlin - Heidelberg, Germany, 2011; pp.3-42.

DOI: 10.1007/978-3-642-17370-7_1

Google Scholar

[16] K.G. Satyanarayana, F. Wypych, J.L. Guimarães, C.S. Amico, T.H.D. Sydenstricker and L.P. Ramos: Met. Mater. Proc. Vol. 17 (2005), p.183.

Google Scholar

[17] K.G. Satyanarayana, J.L. Guimarães and F. Wypych: Composites: Part A Vol. 38 (2007), p.1694.

Google Scholar

[18] S.N. Monteiro, K.G. Satyanarayana and F.P.D. Lopes: Mater. Sci. Forum Vols. 638-642 (2010), p.961.

Google Scholar

[19] P. Wambua, I. Ivens and I. Verpoest: Compos. Sci. Technol. Vol. 63 (2003), p.1259.

Google Scholar

[20] S.V. Joshi, L.T. Drzal, A.K. Mohanty and S. Arora: Composites Part A Vol. 35 (2004), p.371.

Google Scholar

[21] S.N. Monteiro, K.G. Satyanarayana, F.M. Margem, A.S. Ferreira, D.C.O. Nascimento, H.P.G. Santafe Jr. and F.P.D. Lopes, Interfacial shear strength in lignocellulosic fibers incorporated polymeric composites. In: Kalia, S.; Kaith, B. S.; Kaur, I. (Eds. ), Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer - Verlag: Berlin - Heidelberg, Germany, 2011; pp.241-262.

DOI: 10.1007/978-3-642-17370-7_9

Google Scholar

[22] A.K. Mohanty, M.A. Khan and G. Hinrichsen: Composites: Part A Vol. 31 (2000), p.143.

Google Scholar

[23] D. Ray, B.K. Sarkar, S. Das and A.K. Rana: Compos. Sci Technol. Vol. 62 (2002), p.911.

Google Scholar

[24] N. Soykeabkaew, P. Supaphol and R. Rujiravamit: Carbohydr. Polym. Vol. 58 (2004), p.53.

Google Scholar

[25] A.P. Kumar, R.P. Singh and B.D. Sarwade: Mater Chem Phys. Vol. 92 (2005), p.458.

Google Scholar

[26] T. -T. Loan Doan, S.L. Gao and E. Mäder: Compos Sci Technol. Vol. 66 (2006), p.952.

Google Scholar

[27] A.K. Mohanty, S.K. Verma and S.K. Nayak: Compos Sci Technol. Vol. 66 (2006), p.538.

Google Scholar

[28] C. Alves, P.M.C. Ferrão, A.J. Silva, L.G. Reis, M. Freitas, L.B. Rodrigues and D.E. Alves: J. Clean Prod. Vol. 18 (2010), p.313.

Google Scholar

[29] E. Abraham, B. Deepa, L.A. Pothan, M. Jacob, S. Thomas, U. Cuelbar, R. Anandjiwala: Carbohydr. Polym. Vol. 86 (2011), p.1468.

Google Scholar

[30] B. Sikdar, R.K. Basak and B.C. Mitra: J. Appl. Polym. Sci. Vol. 55 (1995), p.1673.

Google Scholar

[31] A.K. Rana, R.K. Basak, B.C. Mitra, M. Lawther and A.N. Banerjee: J. Appl. Polym Sci. Vol. 64 (1997), p.1517.

Google Scholar

[32] P. Garside and P. Wyeth: Studies in Conservation Vol. 48 (2003), p.255.

Google Scholar

[33] M.M. Ibrahim, A. Dusfrene, W.K. El-Zawawy and F.A. Agblevor: Carbohydr Polym. Vol. 81 (2010), p.811.

Google Scholar

[34] M.A. Khan, K.M. Idriss Ali and S.C. Basm: J. Appl Polym Sci. Vol. 49 (1993), p.1547.

Google Scholar