DFT Study of Chemisorbed Atomic Oxygen Inducing Co Segregation in CoNi(111) Alloy

Article Preview

Abstract:

Chemisorbed atomic oxygen inducing Co segregation in CoNi (111) alloy is studied using periodic self-consistent density functional theory (DFT) calculations. In particular, the coverage dependence and possible adsorption-induced segregation phenomena are addressed by investigating segregation energies (the difference in calculated total free energy between surface sites and bulk-like sites) of isolated Co in CoNi (111) alloy. In agreement with previous experimental and theoretical investigations, segregation of Co is found to be oxygen-coverage dependent. While for ‘clean’ CoNi (111), Co prefers to be in the bulk. In the presence of more than 2/9 ML of oxygen, Co segregates to the surface. The analysis of oxygen adsorption trends and surface electronic structures explains the change in the local atomic arrangement which is expected to occur on the surface of alloys under reaction conditions. Our predictions for the high oxygen coverage cases are particularly relevant in underlining the importance of segregation phenomena to the hydrogen evolution performance of CoNi alloy hydrogen evolution electrode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

362-369

Citation:

Online since:

March 2016

Export:

Price:

[1] H.B. Zhu, D.H. Anjum,  Q.X. Wang, Sn surface-enriched Pt–Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation, J. Catal. 320 (2014) 52-56.

DOI: 10.1016/j.jcat.2014.09.013

Google Scholar

[2] Y. Iizuka, R. Inoue, T. Miura, Chemical environment of Ag atoms contained in Au-Ag bimetallic catalysts and the generation of the catalytic activity for CO oxidation, Appl. Catal. A- Gen. 483 (2014) 63-75.

DOI: 10.1016/j.apcata.2014.06.030

Google Scholar

[3] R.H. Bowker, B. Ilic, B.A. Carrillo, Carbazole hydrodenitrogenation over nickel phosphide and Ni-rich bimetallic phosphide catalysts, Appl. Catal. A- Gen. 482 (2014) 221-230.

DOI: 10.1016/j.apcata.2014.05.026

Google Scholar

[4] R.G. Kukushkin, O.A. Bulavchenko, V. V Kaichev, Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters, Appl. Catal. B- Environ. 163 (2015) 531-538.

DOI: 10.1016/j.apcatb.2014.08.001

Google Scholar

[5] C. Yuan, N. Yao, X. Wang, The SiO2 supported bimetallic Ni–Ru particles: A good sulfur-tolerant catalyst for methanation reaction, Chem. Eng. J. 260 (2015) 1-10.

DOI: 10.1016/j.cej.2014.08.079

Google Scholar

[6] Z.O. Malaibari, E. Croiset, A. Amin, Effect of interactions between Ni and Mo on catalytic properties of a bimetallic Ni-Mo/Al2O3 propane reforming catalyst, Appl. Catal. A- Gen. 490 (2015) 80-92.

DOI: 10.1016/j.apcata.2014.11.002

Google Scholar

[7] W.A. Badawy, H. Nady, M Negen, Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crystalline Ni–Co cathodes, Int. J. Hydrogen. Energy. 39 (2014) 10824-10832.

DOI: 10.1016/j.ijhydene.2014.05.049

Google Scholar

[8] J. Xu, T. White, P. Li, Biphasic Pd−Au Alloy Catalyst for Low-Temperature CO Oxidation, J. Am. Chem. Soc. 132 (2010) 10398-10406.

DOI: 10.1021/ja102617r

Google Scholar

[9] J.S. Jirkovsky, I. Panas, S. Romani, Potential-Dependent Structural Memory Effects in Au–Pd Nanoalloys, J. Phys. Chem. Lett. 3 (2012) 315-321.

DOI: 10.1021/jz201660t

Google Scholar

[10] K.J. Andersson, F. Calle-Vallejo, J. Rossmeisl, Adsorption-driven surface segregation of the less reactive alloy component, J. Am. Chem. Soc. 131 (2009) 2404-2407.

DOI: 10.1021/ja8089087

Google Scholar

[11] C.A. Menning, J.G. Chen, General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces, J. Chem. Phys. 130 (2009) 174709-174719.

DOI: 10.1063/1.3125926

Google Scholar

[12] H. Guesmi, C. Louis, L. Delannoy, Chemisorbed atomic oxygen inducing Pd segregation in PdAu(111) alloy: Energetic and electronic DFT analysis, Chem. Phys. Lett. 503 (2011) 97-100.

DOI: 10.1016/j.cplett.2010.12.064

Google Scholar

[13] A. Dhouib, H. Guesmi, DFT study of the M segregation on MAu alloys (M = Ni, Pd, Pt) in presence of adsorbed oxygen O and O2, Chem. Phys. Lett. 521 (2012) 98-103.

DOI: 10.1016/j.cplett.2011.11.050

Google Scholar

[14] A.V. Ruban, H.L. Skriver, Calculated surface segregation in transition metal alloys, Comp. Mater. Sci. 15 (1999) 119-125.

DOI: 10.1016/s0927-0256(99)00003-8

Google Scholar

[15] A.U. Nilekar, A.V. Ruban, M. Mavrikakis, Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys, Surf. Sci. 603 (2009) 91-96.

DOI: 10.1016/j.susc.2008.10.029

Google Scholar

[16] R. Jayaganthan, G.M. Chow, Thermodynamics of surface compositional segregation in Ni–Co nanoparticles, Mater. Sci. Eng., B. 95 (2002) 116-123.

DOI: 10.1016/s0921-5107(02)00221-0

Google Scholar

[17] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B. 49 (1994) 14251-14269.

DOI: 10.1103/physrevb.49.14251

Google Scholar

[18] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[19] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[20] G. Kresse, D. Joubert, G. Kresse, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. rev. B. 59 (1999) 1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[21] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[22] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[23] M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integra-tion in metals, Phys. Rev. B. 40 (1989) 3616-3621.

DOI: 10.1103/physrevb.40.3616

Google Scholar

[24] J. Neugebauer, M. Scheffler, Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111), Phys. Rev. B. 46 (1992) 16067-16080.

DOI: 10.1103/physrevb.46.16067

Google Scholar

[25] H.J. Monkhorst, J.D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[26] F.R. DeBoer, R. Boom, A.R. Miedema, Cohesion in Metals, Amsterdam, North-Holland,(1988).

Google Scholar

[27] B. Hammer, Y. Morikawa, J.K. Nøskov, CO Chemisorption at Metal Surfaces and Overlayers, Phys. Rev. Lett. 76 (1996) 2141-2144.

DOI: 10.1103/physrevlett.76.2141

Google Scholar