High Quality Graphene Formation on 3C-SiC/4H-AlN/Si Heterostructure

Article Preview

Abstract:

The growth of graphene on 3C-SiC/Si heterostructure is a promising approach, which provides low production cost, high scalability and easiness of nanoelectromechanical system fabrication. However, the quality of graphene is still insufficient for device applications due to mediocre morphological and structural quality of the 3C-SiC epilayers compared to bulk SiC crystals and to excessive Si out-diffusion from the Si substrate. Here, we propose a solution of inserting a 4H-AlN layer between 3C-SiC and Si, which allows us to polish the 3C-SiC film without worrying about enhancement of the Si out-diffusion despite the thinning after the polishing. With this insertion, a considerable quality improvement is achieved in our graphene on silicon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-93

Citation:

Online since:

October 2014

Export:

Price:

* - Corresponding Author

[1] K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science. 36 (2004) 666.

Google Scholar

[2] A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183.

Google Scholar

[3] J.M. Dawlaty et al., Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible, Appl. Phys. Lett. 93 (2008) 131905.

DOI: 10.1063/1.2990753

Google Scholar

[4] C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science. 321(2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[5] P. Seneor et al., Spintronics with graphene, MRS Bull. 37 (2012) 1245.

Google Scholar

[6] Y. Hernandez and et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol. 3 (2009) 563, (2009).

Google Scholar

[7] X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science. 324 (2009) 1312.

Google Scholar

[8] T. Kobayashi et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process, Appl. Phys. Lett. 102 (2013) 023112.

DOI: 10.1063/1.4776707

Google Scholar

[9] D.V. Kosynkin et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature. 458 (2009) 872.

DOI: 10.1038/nature07872

Google Scholar

[10] L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, and H.J. Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature. 458, (2009) 877.

DOI: 10.1038/nature07919

Google Scholar

[11] I. Forbeaux, J-M. Themlin, and J-M. Debever, Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure, Phys. Rev. Lett. 58 (1998) 16396.

DOI: 10.1103/physrevb.58.16396

Google Scholar

[12] C. Berger et al., Ultrathin Epitaxial Graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B. 108 (2004) 19912.

DOI: 10.1021/jp040650f

Google Scholar

[13] M. Suemitsu and H. Fukidome, Epitaxial graphene on silicon substrates, J. Phys. D: Appl. Phys. 43 (2010) 374012.

DOI: 10.1088/0022-3727/43/37/374012

Google Scholar

[14] M. Suemitsu, Y. Miyamoto, H. Handa, and A. Konno, Graphene formation on a 3C-SiC(111) thin film grown on Si(110) substrate, e-J. Surf. Sci. Nanotech. 7 (2009) 311.

DOI: 10.1380/ejssnt.2009.311

Google Scholar

[15] T. Ide et al., Epitaxy of graphene on 3C-SiC(111) thin films on microfabricated Si(111) substrates, Jpn. J. Appl. Phys. 51 (2012) 06FD02.

DOI: 10.7567/jjap.51.06fd02

Google Scholar

[16] V.Y. Aristov et al., Graphene synthesis on cubic SiC/Si wafers: perspectives for mass production of graphene-based electronic devices, Nano Lett. 10 (2010) 992.

DOI: 10.1021/nl904115h

Google Scholar

[17] S. Nishino, J.A. Powell, and H.A. Will, Production of large-area single-crystal wafer of cubic SiC for semiconductor device, Appl. Phys. Lett. 42 (1983) 460.

DOI: 10.1063/1.93970

Google Scholar

[18] G. Reza Yazdi et al., Growth of large are monolayer graphene on 3C-SiC and a comparison with other SiC polytype , Carbon. 57 (2013) 477.

DOI: 10.1016/j.carbon.2013.02.022

Google Scholar

[19] M. Zielinski et al., Experimental observation and analytical model of the stress gradient inversion in 3C-SiC layers on Silicon, J. Appl. Phys. 111 (2012) 053507.

DOI: 10.1063/1.3687370

Google Scholar

[20] J. Komiyama et al., Polarities of AlN films and underlying 3C-SiC intermediate layers grown on (1 1 1) Si substrates, J. Cryst. Growth. 310 (2008) 96.

DOI: 10.1016/j.jcrysgro.2007.10.017

Google Scholar

[21] D. Zhuang and J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review, Mater. Sci. Eng., R. 48 (2005) 1.

Google Scholar

[22] S. Shivaraman et al., Free-standing epitaxial graphene, Nano Lett. 9 (2009) 3100.

Google Scholar

[23] M. Takamura et al., Epitaxial trilayer graphene mechanical resonators obtained by electrochemical etching combined with hydrogen intercalation, Jpn. J. Appl. Phys. 52 (2013) 04CH01.

DOI: 10.7567/jjap.52.04ch01

Google Scholar

[24] H. Nakazawa, M. Suemitsu, and S. Asami, Gas-source MBE of SiC/Si using monomethylsilane, Thin Solid Films. 369 (2000) 269.

DOI: 10.1016/s0040-6090(00)00821-x

Google Scholar

[25] S. Jun and M. Horita, Polytype replication in heteroepitaxial growth of nonpolar AlN on SiC, MRS Bull. 34 (2009) 348.

DOI: 10.1557/mrs2009.98

Google Scholar

[26] T. Seyller, Passivation of hexagonal SiC surfaces by hydrogen termination, J. Phys.: Condens. Matter. 16 (2004) S1755.

DOI: 10.1088/0953-8984/16/17/016

Google Scholar

[27] A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev., B. 61 (2000) 14095.

DOI: 10.1103/physrevb.61.14095

Google Scholar

[28] M.A. Pimenta et al., Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9 (2007) 1276.

Google Scholar

[29] A. Sandin, J.E. Rowe, and D.B. Dougherty, Improved graphene growth in UHV: Pit-free surfaces by selective Si etching of SiC(0001)-Si with atomic hydrogen, Surf. Sci. 611(2013) 25.

DOI: 10.1016/j.susc.2013.01.010

Google Scholar

[30] N. Sieber et al., Origin of the split Si–H stretch mode on hydrogen terminated 6H-SiC(0001): Titration of crystal truncation, Appl. Phys. Lett. 80 (2002) 4726.

DOI: 10.1063/1.1488692

Google Scholar