Polarization Engineering of Al(Ga)N/GaN HEMT Structures for Microwave High Power Applications

Article Preview

Abstract:

The aim of this paper is to optimize the epitaxial layer structure of an AlGaN/GaN high electron mobility transistor (HEMT) for high power density at high frequency. The idea is to play on the polarization engineering with the different layers of the epitaxial stack. The influence of the cap and barrier layer thicknesses, the aluminum content in the barrier and the insertion of an AlGaN buffer layer are studied through the electron gas density, electron mobility and sheet resistance. This permits to find out the best trade-off in order to satisfy the requirements for high performances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-87

Citation:

Online since:

October 2014

Export:

Price:

* - Corresponding Author

[1] D. Dumka, C. Lee, H. -Q. Tserng, P. Saunier and M. Kumar, AlGaN/GaN HEMTs on Si substrate with 7W/mm output power density at 10GHz, IEEE Electron. Lett. 40 (2004) 1023-1024.

DOI: 10.1049/el:20045292

Google Scholar

[2] D. Ducatteau, A. Minko, V. Hoel, E. Morvan, E. Delos, B. Grimbert, H. Lahreche, P. Bove, C. Gaquiere, J. -C. De Jaeger and S. Delage, Output power density of 5. 1W/mm at 18GHz with an AlGaN/GaN HEMT on Si substrate, IEEE Electron. Device Lett. 27 (2006).

DOI: 10.1109/led.2005.860385

Google Scholar

[3] T. Ueda, T. Tanaka and D. Ueda, Current status on GaN-based RF-power devices, in Proc. European Solid-State Device Research Conf., Helsinki, Finland (2011) 36-41.

DOI: 10.1109/essderc.2011.6044237

Google Scholar

[4] D. Marti, S. Tirelli, A. Alt, J. Roberts and C. Bolognesi, 150GHz Cut-off Frequencies and 2W/mm Output Power at 40GHz in a Millimeter-Wave AlGaN/GaN HEMT Technology on Silicon, IEEE Electron. Device Lett. 33 (2012) 1372-1374.

DOI: 10.1109/led.2012.2204855

Google Scholar

[5] F. Medjdoub, M. Zegaoui, B. Grimbert, D. Ducatteau, N. Rolland and P. Rolland, First Demonstration of High-Power GaN-on-Silicon Transistors at 40GHz, IEEE Electron. Device Lett. 33 (2012) 1168-1170.

DOI: 10.1109/led.2012.2198192

Google Scholar

[6] A. Soltani, J. -C. Gerbedoen, Y. Cordier, D. Ducatteau, M. Rousseau, M. Chmielowska, M. Ramdani, and J. -C. De Jaeger, Power Performance of AlGaN/GaN High-Electron-Mobility Transistors on (110) Silicon Substrate at 40GHz, IEEE Electron. Device Lett. 44 (2013).

DOI: 10.1109/led.2013.2244841

Google Scholar

[7] G. Jessen, R. Fitch, J. Gillespie, G. Via, A. Crespo, D. Langley, D. Denninghoff, M. Trejo and E. Heller, Short-Channel Effect Limitations on High-Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices, IEEE Trans. Electron Devices 54 (2007).

DOI: 10.1109/ted.2007.904476

Google Scholar

[8] Y. Cao and D. Jena, High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions, Appl. Phys. Lett. 90 (2007) 182112.

DOI: 10.1063/1.2736207

Google Scholar

[9] Y. Cordier, F. Semond, M. Hugues, F. Natali, P. Lorenzini, H. Haas, S. Chenot, M. Laügt, O. Tottereau, P. Vennegues, J. Massies, AlGaN/GaN/AlGaN DH-HEMTs grown by MBE on Si(111), J. Cryst. Growth 298 (2005) 393-396.

DOI: 10.1016/j.jcrysgro.2005.01.038

Google Scholar

[10] Y. Cordier, F. Semond, P. Lorenzini, N. Grandjean, F. Natali, B. Damilano, J. Massies, V. Hoel, A. Minko, N. Vellas, C. Gaquiere, J-C. DeJaeger, B. Dessertene, S. Cassette, M. Surrugue, D. Adam, J-C. Grattepain, R. Aubry, S. L. Delage, MBE growth of AlGaN/GaN HEMTS on resistive Si(111) substrate with RF small signal and power performances, J. Cryst. Growth 251 (2003).

DOI: 10.1109/mbe.2002.1037778

Google Scholar

[11] Y. Cordier, M. Azize, N. Baron, S. Chenot, O. Tottereau, J. Massies, AlGaN/GaN HEMTs regrown by MBE on epi-ready semi-insulating GaN-on-sapphire with inhibited interface contamination, J. Cryst. Growth 309 (2007) 1-7.

DOI: 10.1016/j.jcrysgro.2007.09.023

Google Scholar

[12] N. Baron, Ph.D. Thesis, University of Nice Sophia Antipolis (2009).

Google Scholar

[13] B. K. Ridley, Polarization-induced electron populations, Appl. Phys. Lett. 77 (2000) 990-992.

Google Scholar

[14] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck and U. K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors, Appl. Phys. Lett. 77 (2000) 250-252.

DOI: 10.1063/1.126940

Google Scholar

[15] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, J. Appl. Phys. 87 (2000).

DOI: 10.1063/1.371866

Google Scholar

[16] F. Bernardini, V. Fiorentini and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B. 56 (1997) 10024-10027.

DOI: 10.1103/physrevb.56.r10024

Google Scholar

[17] D. Marti, C. R. Bolognesi, Y. Cordier, M. Chmielowska and M. Ramdani, RF Performance of AlGaN/GaN High-Electron-Mobility Transistors Grown on Silicon (110), Appl. Phys. Express 4 (2011) 064105.

DOI: 10.1143/apex.4.064105

Google Scholar