Hardness Regulation of Fe-Based Amorphous Composite Coatings by Laser Remelting

Article Preview

Abstract:

A Fe-based amorphous composite coating was deposited on a carbon steel substrate by arc spraying, and remelted with different laser energies by the Nd: YAG laser cladding system, in order to improve the mechanical properties of the coatings. The microstructure and microhardness of the composite coatings were investigated. The variation of harndness was measured as a function of the modified layer depth, which indicates that the laser remelting improves the bonding strength and hardness. Increasing the laser power, the quality of coating gets better, but the amorphous volume fraction decreases. It is obtained that the optimal laser electric current for the coating of 280 μm thickness is about 300 A, in which the remelted coating with medium energy densities has the highest average Vickers hardness of 741. Through the volume fraction change of the nanocrytals, the hardness of the composite coating is regulated by the laser power input, which amplified the application fields of the amorphous coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-69

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] S. Kamnis, S. Gu, T. J. Lu, C. Chen, Numerical modeling the bonding mechanism of HVOF sprayed particles, Comput. Mater. Sci. 46 (2009) 1038-1043.

DOI: 10.1016/j.commatsci.2009.05.009

Google Scholar

[2] L. Wang, H. Bei, Y. F. Gao, Z. P. Lu, T. G. Nieh, Effect of residual stresses on the onset of yielding in a Zr-based metallic glass, Acta Mater. 59 (2011) 7627.

DOI: 10.1016/j.actamat.2011.09.029

Google Scholar

[3] J. J. He, N. Li, N. Tang, X. Y. Wang, C. Zhang, L. Liu, The precision replication of a microchannel mould by hot-embossing a Zr-based bulk metallic glass, Intermetallics, 21 (2012) 50.

DOI: 10.1016/j.intermet.2011.10.001

Google Scholar

[4] A. Basu, A. N. Samant, S. P. Harimkar, J. Dutta Majumdar, I. Manna, N. B. Dahotre, Laser surface coating of Fe–Cr–Mo–Y–B–C bulk metallic glass composition on AISI 4140 steel, Surf. Coat. Technol. 202 (2008) 2623-2631.

DOI: 10.1016/j.surfcoat.2007.09.028

Google Scholar

[5] B. Chen, Y. Li, Y. Cai, R. Li, S. Pang, T. Zhang, Surface vitrification of alloys by laser surface treatment, J. Alloys Compd. 511 (2012) 215.

DOI: 10.1016/j.jallcom.2011.09.039

Google Scholar

[6] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[7] E. Yin, L. Zhuo, B. Yang, H. Wang, T. Zhang, Microstructure and mechanical properties of a spray-formed Ti-based metallic glass former alloy, J. Alloys Compd. 512 (2012) 241.

DOI: 10.1016/j.jallcom.2011.09.074

Google Scholar

[8] C. Zhang, Y. Wu, K. C. Chan, L. Liu, Pitting initiation in Fe-based amorphous coatings, Acta Mater. 60 (2012) 4152.

DOI: 10.1016/j.actamat.2012.04.005

Google Scholar

[9] B. Shen, C. Chang, Z. Zhang, A. Inoue, J. Appl. Phys. 102 (2007) 023515.

Google Scholar

[10] A. Kobayashi, S. Yano, H. Kimura, A. Inoue. Mechanical property of Fe-base metallic glass coating formed by gas tunnel type plasma spraying, Surf. Coat. Technol. 202 (2008) 2513-2518.

DOI: 10.1016/j.surfcoat.2007.09.011

Google Scholar

[11] A. Kobayashi, S. Yano, H. Kimura, H. Kimura, A. Inoue, Fe-based metallic glass coatings produced by smart plasma spraying process, Mater. Sci. Eng. 148 (2008) 110.

DOI: 10.1016/j.mseb.2007.09.035

Google Scholar

[12] H. Ni, X. Liu, X. Chang, W. Hou, W. Liu, J. Wang, High performance amorphous steel coating prepared by HVOF thermal spraying, J. Alloys Compd. 467 (2009) 163.

DOI: 10.1016/j.jallcom.2007.11.133

Google Scholar

[13] S. Kamnis, S. Gu, M. Vardavoulias, The influence of powder porosity on the bonding mechanism at the impact of thermally sprayed solid particles, Metall. Mater. Trans. 41 (2010) 3517.

DOI: 10.1007/s11661-010-0488-8

Google Scholar

[14] C. Li, Y. Wang, Effect of particle state on the adhesive strength of HVOF sprayed metallic coating, J. Therm. Spray Tech. 11 (2002) 523.

DOI: 10.1361/105996302770348655

Google Scholar

[15] J. Cheng, X. Liang, B. Xu, Y. Wu, Microstructure and wear behavior of FeBSiNbCr metallic glass coatings, J. Mater. Sci. Technol. 25 (2009) 687-690.

Google Scholar

[16] R. Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, L. Liu, Corros. Sci. 53 (2011) 2351.

Google Scholar

[17] K. Chokethawai, D. G. McCartney, P. H. Shipway, J. Alloys Compd. 480 (2009) 351-359.

Google Scholar

[18] A. Basu, A. N. Samant, S. P. Harimkar, J. D. Majumdar, I. Manna, N. B. Dahotre, Laser surface coating of Fe–Cr–Mo–Y–B–C bulk metallic glass composition on AISI 4140 steel, Surf. Coat. Technol. 202 (2008) 2623–2631.

DOI: 10.1016/j.surfcoat.2007.09.028

Google Scholar

[19] D. T.A. Matthews, V. Ocelik, J. T. M. de Hosson, Tribological and mechanical properties of high power laser surface-treated metallic glasses, Mater. Sci. Eng. 471 (2007) 155-164.

DOI: 10.1016/j.msea.2007.02.119

Google Scholar

[20] Z. Zhou, L. Wang, D.Y. He, F. C. Wang, Y. B. Liu, J. Therm. Spray Tech. 19 (2010) 1287-1293.

Google Scholar