Effect of Phase Stability on Some Physical and Mechanical Properties in β-Ti Single Crystal for Biomedical Applications

Article Preview

Abstract:

The electron-atom ratio (e/a) dependence of the appearance of the lattice modulation and physical properties in β-phase Ti-xNb alloys (x = 28, 30, 34 and 40) were investigated by using some physical properties measurements, compressive test and transmission electron microscope observations (TEM observations), focusing on the β-phase stability. The microstructure, physical properties, deformation mode depend on the e/a ratio which is closely related to the β-phase stability in Ti-Nb alloys. The e/a ratio is defined by the average electrons per atom in free atom configuration. Athermal ω-phase is suppressed in Ti-30Nb alloy single crystal with low e/a ratio. The Ti-30Nb alloy single crystal also exhibits a lattice modulation and low Debye temperature. These results imply that the β-phase stability in β-phase Ti alloys decreases with decreasing the e/a ratio and are related to the softening of elastic stiffness, c′. Consequently, a decrease in the e/a ratio leads to the softening of c′ and a significant reduction in modulus along the [100] direction in β-phase Ti alloys single crystal. In fact, the Young’s modulus along [100] of the Ti-15Mo-5Zr-3Al alloy (wt.%) single crystal with low e/a ratio exhibits as low as 45 GPa, which is comparable to that the human cortical bone. That is, controlling the e/a ratio is an ultimate strategy to develop the future superior biocompatible implant materials with extremely low Young’s modulus and good deformability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1372-1376

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia: Prog. Mater. Sci. 54 (2009) 397425.

Google Scholar

[2] Y. Noyama, T. Miura, T. Ishimoto, T. Itaya, M. Niinomi and T. Nakano: Mater. Trans. 53 (2012) 565570.

Google Scholar

[3] T. Nakano, K. Kaibara, T. Ishimoto, Y. Tabata and Y. Umakoshi: Bone 51(2012) 741747.

Google Scholar

[4] A. Matsugaki, G. Aramoto and T. Nakano: Biomaterials 33 (2012) 73277335.

Google Scholar

[5] S. -H. Lee, K. Hagihara and T. Nakano: Metall. Mater. Trans. A 43 (2012) 15881597.

Google Scholar

[6] R. Hermann, H. Hermann, M. Calin, B. Büchner and J. Eckert: Scr. Mater. 66 (2012) 198201.

Google Scholar

[7] H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda and S. Miyazaki: Acta Mater. 54 (2006) 24192429.

Google Scholar

[8] T. Inamura, H. Hosoda, K. Wakashima and S. Miyazaki: Mater. Trans. 46 (2005) 15971603.

Google Scholar

[9] H. S. Kim, W. Y. Kim and S. H. Lim: Scr. Mater. 54 (2006) 887891.

Google Scholar

[10] E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi and S. Hanada: Mater. Trans. 43 (2002) 29782983.

Google Scholar

[11] H. Matsumoto, S. Watanabe and S. Hanada: Mater. Trans. 46 (2005) 10701078.

Google Scholar

[12] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro: Mater. Sci. Eng. A 243 (1998) 244-249.

Google Scholar

[13] M. Niinomi: Biomaterials 24 (2003) 2673-2683.

Google Scholar

[14] M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Mori, H. Nakajima: Acta Mater. 58 (2010) 6790-6798.

DOI: 10.1016/j.actamat.2010.09.007

Google Scholar

[15] M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Nakajima: Acta Mater. 56 (2008) 2856-2863.

DOI: 10.1016/j.actamat.2008.02.017

Google Scholar

[16] S.H. Lee, M. Todai, M. Tane, K. Hagihara, H. Nakajima, T. Nakano: J. Mech. Behav. Biomed. Mater. 14 (2012) 48-54.

Google Scholar

[17] M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki: Acta Mater. 59 (2011) 6208-6218.

Google Scholar

[18] M. Todai, T. Fukuda, T. Kakeshita: J. Alloys Comp. In press. doi: org/10. 1016/j. jallcom. 2012. 02. 026.

Google Scholar

[19] M. Ikeda, S. Komatsu, T. Sugimoto, K. Kamei: J. Jpn. Inst. Met. 52 (1988) 1206-1211.

Google Scholar

[20] S.L. Ames, A.D. Mcquillan: Acta Metall. 2 (1954) 831-836.

Google Scholar

[21] J.C. Ho, E.W. Collings: Phys. Rev. B 6 (1972) 3727-3739.

Google Scholar

[22] J. C Williams, D. De Fontaine, N.E. Paton: Metall. Trans. 4 (1973) 2701-2708.

Google Scholar

[23] D. De Fontaine, N.E. Paton, J.C. Williams: Acta Metall. 19 (1971) 1153-1162.

Google Scholar

[24] P. Wang, M. Todai, T. Nakano: Mater. Trans. 54 (2013) 156-160.

Google Scholar

[25] J. Bishoff, P.G. Vassilev, I.N. Goncharov: Cryogenics 22 (1982) 131-134.

Google Scholar