Osteoconductivity of Hydrothermal-Treated Valve Metals

Article Preview

Abstract:

Anti-corroded valve metals, such as Ti, Nb, Ta, and Zr have been used as metallic biomaterials. However, as untreated surfaces, they do not have high osteoconductivity, and surface coatings with bioactive substances are needed for the implantation into the bone. Surface property, especially hydrophilicity, is considered to have a strong influence on the biological reactions. However, the influence of a hydrophilic surface on osteoconductivity is not completely clear. In this study, we produced super-hydrophilic surface on valve metals (Ti, Nb, Ta and Zr) using a hydrothermal treatment at 180 °C for 180 min. in the distilled water, and then the treated samples were stored in 5PBS(-). This maintained water contact angle less than 10 (deg.) in an apparent. The osteoconducivity of super-hydrophilic treated metals was evaluated with in vivo tests. The hard tissue formation on the samples increased with decreasing the water contact angle. That is to say that super-hydrophilic valve metals without coating of bioactive substances had high osteoconductivity, and the surface properties strongly affected on the osteoconductivity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1298-1302

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] D. M. Gordin, T. Gloriant, G. Nemtoi, R. Chelariu, N. Aelenei, A. Guillou, D. Ansel, Synthesis and phase transformations of beta metastable Ti based alloys containing biocompatible Ta, Mo and Fe betastabilizer elements, Mater. Lett., 59 (2005).

DOI: 10.1002/adem.200600106

Google Scholar

[2] L. F. Cooper, Y. Zhou, J. Takebe, J. Guo, A. Abron, A. Holmen, J. E. Ellingsen, Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c. p. titanium endosseous implants, Biomater., 27 (2006) 926-936.

DOI: 10.1016/j.biomaterials.2005.07.009

Google Scholar

[3] T. Jinno, S. K. Kirk, S. Morita, V. M. Goldberg, Effects of calcium ion implantation on osseointegration of surface blasted titanium alloy femoral implants in a canine total hip arthroplasty model, J. Arthroplasty, 19 (2004) 102-109.

DOI: 10.1016/j.arth.2003.10.001

Google Scholar

[4] J. W. Park, K. B. Park, J.Y. Suh, Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae, Biomater., 28 (2007) 3306-3313.

DOI: 10.1016/j.biomaterials.2007.04.007

Google Scholar

[5] J. W. Park, J. H. Jang, C. S. Lee, T. Hanawa, Osteoconductivity of hydrophilic microstructured titanium implant with phosphate ion chemistry, Acta Biomater., 5 (2009) 2311-2321.

DOI: 10.1016/j.actbio.2009.02.026

Google Scholar

[6] F. Muratore, A. Baron-Wiechec, A. Gholinia, T. Hashimoto, P. Skeldon, G.E. Thompson, Comparison of nanotube formation on zirconium in fluoride/ glycerol electrolytes at different anodizing potentials, Electrochimica Acta, 58 (2011) 389.

DOI: 10.1016/j.electacta.2011.09.062

Google Scholar

[7] G. D. Sulka, A. Brzozka, L. Liu, Fabrication of diameter-modulated and ultrathin porous anowires in anodic aluminum oxide templates, Electrochim. Acta 56 (2011) 4972.

DOI: 10.1016/j.electacta.2011.03.126

Google Scholar

[8] K. L. Kilpadi, P. L. Chang, and S. L. Bellis, Hydroxylapatite Binds More Serum Proteins, Purified Integrins, and Osteoblast Precursor Cells than Titanium or Steel, J. Biomed. Mater. Res. A, 57 (2001), 258-267.

DOI: 10.1002/1097-4636(200111)57:2<258::aid-jbm1166>3.0.co;2-r

Google Scholar

[9] F. Rupp, L. Scheideler, N. Olshanska, M. de Wild, M. Wieland, and J. Geis-Gerstorfer, Enhancing Surface Free Energy and Hydrophilicity through Chemical Modification of Microstructured Titanium Implant Surfaces, J. Biomed. Mater. Res. A, 76A (2006).

DOI: 10.1002/jbm.a.30518

Google Scholar

[10] K. Das, S. Bose and A. Bandyopadhyay, Surface Modifications and Cell-Materials Interactions with Anodized Ti, Acta Biomater., 3 (2007), 573-585.

DOI: 10.1016/j.actbio.2006.12.003

Google Scholar

[11] M. Bigerelle, K. Anselme, B. Noel, I. Ruderman, P. Hardouin and A. Iost, Improvement in the Morphology of Ti-based Surfaces: a New Process to Increase In Vitro Human Osteoblast Response, Biomater., 23(2002), 1563-1577.

DOI: 10.1016/s0142-9612(01)00271-x

Google Scholar

[12] M. Zuldesmi, A. Waki, K. Kuroda and M. Okido, High Osteoconductive Surface of Pure Titanium by Hydrothermal Treatment, J. Biomater. and Nanobiotech., 4 (2013), 284-290.

DOI: 10.4236/jbnb.2013.43036

Google Scholar

[13] D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino M. Okido and A. Seki, Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes, Bioinorg. Chem. Appl., 2012(2012), ID 495218.

DOI: 10.1155/2012/495218

Google Scholar

[14] H. Habazaki, M. Uozumi, H. Konno, K. Shimizu, P. Skeldon and G. E. Thopson, Crystallization of anodic titania on titanium and its alloys, Corr. Sci., 45(2003), 2063-(2073).

DOI: 10.1016/s0010-938x(03)00040-4

Google Scholar

[15] D. Yamamoto, K. Arii, K. Kuroda, R. Ichino M. Okido and A. Seki, Osteoconductivity of Superhydropilic Anodized TiO2 Coatings on Ti Treated with Hydrothermal Processes, J. Biomater. Nanobiotech., 4(2013) 45-52.

DOI: 10.4236/jbnb.2013.41007

Google Scholar

[16] D. Yamamoto, T. Iida, K. Arii, K. Kuroda, R. Ichino M. Okido and A. Seki, Surface Hydrophilicity and Osteoconductivity of Anodized Ti in Aqueous Solutions with Various Solute Ions, Mater. Trans. 53(2012) 1956-(1961).

DOI: 10.2320/matertrans.m2012082

Google Scholar