Development of Thermally Conductive Polymer Materials and their Investigation

Article Preview

Abstract:

In the recent years a remarkable development can be observed in the electronics. New products of electronic industry generate more and more heat. To dissipate this heat, thermally conductive polymers offer new possibilities. The goal of this work was to develop a novel polymer based material, which has a good thermal conduction. The main purpose during the development was that this material can be processed easily with injection molding. To eliminate the weaknesses of the traditional conductive composites low-melting-point alloy was applied as filler. Furthermore in this work the effect of the filler content on thermal conductivity, on structure and on mechanical properties was investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-84

Citation:

Online since:

November 2012

Export:

Price:

[1] K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets, Carbon. 45 (2007) 1446-1452.

DOI: 10.1016/j.carbon.2007.03.029

Google Scholar

[2] A. Boudenne, L. Ibos, M. Fois, J.C. Majesté, E. Géhin, Electrical and thermal behavior of polypropylene filled with copper particles, Composites: Part A. 36 (2005) 1545-1554.

DOI: 10.1016/j.compositesa.2005.02.005

Google Scholar

[3] Jones W. E., Chiguma J., Johnson E., Pachamuthu A., Santos D., Electrically and Thermally Conducting Nanocomposites for Electronic Applications, Materials. 3 (2010) 1478-1496.

DOI: 10.3390/ma3021478

Google Scholar

[4] W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Thermal conductivity of boron nitride reinforced polyethylene composites, Materials Research Bulletin. 42 (2007) 1863-1873.

DOI: 10.1016/j.materresbull.2006.11.047

Google Scholar

[5] Z. Hana, A. Fina, Thermal conductivity of carbonnanotubes and their polymer nanocomposites: A review, Progress in Polymer Science. 36 (2011) 914-944.

DOI: 10.1016/j.progpolymsci.2010.11.004

Google Scholar

[6] J. H. Yu, J. K. Duan, W. Y. Peng, L. C. Wang, P. Peng, P. K. Jiang, Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system, eXPRESS Polymer Letters. 5 (2011).

DOI: 10.3144/expresspolymlett.2011.14

Google Scholar

[7] J. A. Molefi, A. S. Luyt, I. Krupa, Comparison of the influence of Cu micro- and nano-particles on the thermal properties of polyethylene/Cu composites, eXPRESS Polymer Letters. 3 (2009) 639-649.

DOI: 10.3144/expresspolymlett.2009.80

Google Scholar

[8] R. Haggenmueller, C. Guthy, J. R. Lukes, J. E. Fischer, K. I. Winey, Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity, Macromolecules. 40 (2007) 2417-2421.

DOI: 10.1021/ma0615046

Google Scholar

[9] W. Zhou, Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites, Thermochimica Acta. 512 (2011) 183-188.

DOI: 10.1016/j.tca.2010.10.003

Google Scholar

[10] J. W. Gu, Q.Y. Zhang, J. Dang, Thermal Conductivity and Mechanical Properties of Aluminum Nitride Filled Linear Low-Density Polyethylene Composites, Polymer Engineering and Science. 49 (2009) 1030-1034.

DOI: 10.1002/pen.21336

Google Scholar

[11] X. Zhang, Y. Pan, J. Cheng, The influence of low-melting-point alloy on the rheological properties of a polystyrene melt, Journal of Materials Science. 35 (2000) 4573-4581.

Google Scholar

[12] W. Michaeli, T. Pfefferkorn, Electrically Conductive Thermoplastic/Metal Hybrid Materials for Direct Manufacturing of Electronic Components, Polymer Engineering and Science. 49 (2009) 1511-1524.

DOI: 10.1002/pen.21374

Google Scholar

[13] R. A. Mrozek, P. J. Cole, L. A. Mondy, R. R. Rao, L. F. Bieg, J. L. Lenhart, Highly conductive, melt processable polymer composites based on nickel and low melting eutectic metal, Polymer. 51 (2010) 2954-2958.

DOI: 10.1016/j.polymer.2010.04.067

Google Scholar

[14] X. Zhang, Y. Pan, L. Shen, Q. Zheng, X. Yi, A Novel Low-Melting-Point Alloy-Loaded Polymer Composite. I. Effect of Processing Temperature on the Electrical Properties and Morphology, Journal of Applied Polymer Science. 77 (2000) 1044-1050.

DOI: 10.1002/1097-4628(20000801)77:5<1044::aid-app11>3.0.co;2-d

Google Scholar

[15] J.G. Kovacs, G. Kortelyesi, N.K. Kovacs, A. Suplicz, Evaluation of measured and calculated thermal parameters of a photopolymer, International Communications in Heat and Mass Transfer. 38 (2011) 863-867.

DOI: 10.1016/j.icheatmasstransfer.2011.04.001

Google Scholar

[16] J. G. Kovács, Shrinkage Alteration Induced by Segregation of Glass Beads in Injection Molded PA6: Experimental Analysis and Modeling, Polymer Engineering and Science. 51 (2011) 2517-2525.

DOI: 10.1002/pen.22025

Google Scholar

[17] J. G. Kovács, B. Solymossy, Effect of Glass Bead Content and Diameter on Shrinkage and Warpage of Injection-Molded PA6, Polymer Engineering and Science. 11 (2009) 2218-2224.

DOI: 10.1002/pen.21470

Google Scholar