Effect of Halloysite Nanotubes on Physico-Mechanical Properties of Silk/Basalt Fabric Reinforced Epoxy Composites

Article Preview

Abstract:

Natural fiber reinforced polymer composites have become more attractive due to their high specific strength, light weight and environmental concern. However, some limitations such as low modulus and poor moisture resistance were reported. This paper presents the role of halloysite nanotubes (HNTs) on physico-mechanical properties of bidirectional silk and basalt fiber reinforced epoxy (SF-BF/Ep) hybrid composites. Vacuum bagging and ultra-sonication method were used for the fabrication of hybrid composite slabs. The effect of HNT loadings (1.5, 3 and 4.5 wt. %) on physico-mechanical characteristics like density, hardness, flexural and impact properties of SF-BF/Ep composites were determined according to ASTM standards. Experimental results revealed that the incorporation of HNTs improves the mechanical properties. The impact strength of SF-BF/Ep is predominant at 3 wt. % HNT loading where the impact strength surges to 568.67 J/m, which may render HNT filled SF-BF/Ep desirable for various toughness-critical structural applications. The test results demonstrated that SF-BF/Ep-3HNT coded composites exhibited improved mechanical properties among the all composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1048)

Pages:

21-32

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] A. Khan, R. Vijay, D.L. Singaravelu, M.R. Sanjay, S. Siengchin, F. Verpoort et al., Extraction and characterization of natural fiber from eleusine indica grass as reinforcement of sustainable fiber-reinforced polymer composites, J. Nat. Fibers. (2019) 1-9.

DOI: 10.1080/15440478.2019.1697993

Google Scholar

[2] D. Shah, Developing plant fiber composites for structural applications by optimising composite parameters: a critical review, J. Mater. Sci. 48 (2013) 6083–107.

DOI: 10.1007/s10853-013-7458-7

Google Scholar

[3] A. Komuraiah, N.S. Kumar and B.D. Prasad, Chemical composition of natural fibers and its influence on their mechanical properties, Mech. Compos. Mater. 50 (2014) 359–376.

DOI: 10.1007/s11029-014-9422-2

Google Scholar

[4] P.T.R. Swain and S. Biswas, Abrasive wear behaviour of surface modified jute fiber reinforced epoxy composites, Mater. Res. 20 (2017) 661–671.

DOI: 10.1590/1980-5373-mr-2016-0541

Google Scholar

[5] M. Ramesh, K. Palanikumar and K.H. Reddy, Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites, Compos. Part B Eng. 48 (2013) 1–9.

DOI: 10.1016/j.compositesb.2012.12.004

Google Scholar

[6] M.F. Ashby and Y.J.M. Bréchet, Designing hybrid materials, Acta Mater. 51 (2003) 5801–5821.

DOI: 10.1016/s1359-6454(03)00441-5

Google Scholar

[7] D. Short and J. Summerscales, Hybrids-a review. Part 1. Techniques, design and construction, Composites 10 (1979) 215–222.

Google Scholar

[8] Y. Swolfs, L. Crauwels, E. Van Breda, L. Gorbatikh, P. Hine, I. Ward et al., Tensile behaviour of intralayer hybrid composites of carbon fibre and self-reinforced polypropylene, Compos. Part A Appl. Sci. Manuf. 59 (2014) 78–84.

DOI: 10.1016/j.compositesa.2014.01.001

Google Scholar

[9] M.T. Dehkordi, H. Nosraty, M.M. Shokrieh, G. Minak and D. Ghelli, Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics, Mater. Des. 31 (2010) 3835–3844.

DOI: 10.1016/j.matdes.2010.03.033

Google Scholar

[10] S.M. Darshan and B. Suresha, Effect of basalt fiber hybridization on mechanical properties of silk fiber reinforced epoxy composites, Mater. Today Proc. (2020) 1-9.

DOI: 10.1016/j.matpr.2020.07.618

Google Scholar

[11] I. Van de Weyenberg, J. Ivens, A. De Coster, B. Kino, E. Baetens and I. Verpoest, Influence of processing and chemical treatment of flax fibres on their composites, Compos. Sci. Technol. 63 (2003) 1241–1246.

DOI: 10.1016/s0266-3538(03)00093-9

Google Scholar

[12] J. Sarki, S.B. Hassan, V.S. Aigbodion and J.E. Oghenevweta, Potential of using coconut shell particle fillers in eco-composite materials, J. Alloys Compd. 509 (2011) 2381–2385.

DOI: 10.1016/j.jallcom.2010.11.025

Google Scholar

[13] E. Bertrand, T.D. Blake and J. De Coninck, Influence of solid-liquid interactions on dynamic wetting: A molecular dynamics study, J. Phys. Condens. Matter 21 (2009) 1-14.

DOI: 10.1088/0953-8984/21/46/464124

Google Scholar

[14] N. Rajini, J.T.W. Jappes, S. Rajakarunakaran and P. Jeyaraj, Mechanical and free vibration properties of montmorillonite clay dispersed with naturally woven coconut sheath composite, J. Reinf. Plast. Compos. 31 (2012) 1364–1376.

DOI: 10.1177/0731684412455259

Google Scholar

[15] A review of recent developments in natural fibre composites and their mechanical performance. (2016).

Google Scholar

[16] P.A. Udaya Kumar, Ramalingaiah, B. Suresha, N. Rajini and K.G. Satyanarayana, Effect of treated coir fiber/coconut shell powder and aramid fiber on mechanical properties of vinyl ester, Polym. Compos. 39 (2018) 4542–4550.

DOI: 10.1002/pc.24561

Google Scholar

[17] F.A. Tanjung, Y. Arifin and S. Husseinsyah, Enzymatic degradation of coconut shell powder–reinforced polylactic acid biocomposites, J. Thermoplast. Compos. Mater. 33 (2020) 800–816.

DOI: 10.1177/0892705718811895

Google Scholar

[18] M. Šupová, G.S. Martynková and K. Barabaszová, Effect of nanofillers dispersion in polymer matrices: A review, Sci. Adv. Mater. 3 (2011) 1–25.

DOI: 10.1166/sam.2011.1136

Google Scholar

[19] C.L. Craig and C. Riekel, Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders, in Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 133 (2002) 493–507.

DOI: 10.1016/s1096-4959(02)00095-7

Google Scholar

[20] S.M. Darshan, B. Suresha, G.S. Divya, Waste Silk Fiber Reinforced Polymer Matrix Composites: A Review, Indian J. Adv. Chem. Sci. S1 (2016) 183–189.

Google Scholar

[21] J.M. Gosline, M.E. DeMont and M.W. Denny, The structure and properties of spider silk, Endeavour 10 (1986) 37–43.

DOI: 10.1016/0160-9327(86)90049-9

Google Scholar

[22] J.M. Gosline, M.W. Denny and M.E. Demont, Spider silk as rubber, Nature 309 (1984), 551–552.

DOI: 10.1038/309551a0

Google Scholar

[23] S.M. Darshan and B. Suresha, Mechanical and abrasive wear behaviour of waste silk fiber reinforced epoxy biocomposites using taguchi method, in Mater. Sci. Forum, 969 (2019), 787–793.

DOI: 10.4028/www.scientific.net/msf.969.787

Google Scholar

[24] W. Li, X. Qiao, K. Sun and X. Chen, Mechanical and viscoelastic properties of novel silk fibroin fiber/poly(ε-caprolactone) biocomposites, J. Appl. Polym. Sci. 110 (2008) 134–139.

DOI: 10.1002/app.28514

Google Scholar

[25] M.P. Ho, K.T. Lau, H. Wang and D. Bhattacharyya, Characteristics of a silk fibre reinforced biodegradable plastic, Compos. Part B Eng. 42 (2011) 117–122.

DOI: 10.1016/j.compositesb.2010.10.007

Google Scholar

[26] A.U. Ude, A.K. Ariffin and C.H. Azhari, An experimental investigation on the response of woven natural silk fiber/epoxy sandwich composite panels under low velocity impact, Fibers Polym. 14 (2013) 127–132.

DOI: 10.1007/s12221-013-0127-2

Google Scholar

[27] P. Noorunnisa Khanam, M. Mohan Reddy, K. Raghu, K. John and S. Venkata Naidu, Tensile, flexural and compressive properties of sisal/silk hybrid composites, J. Reinf. Plast. Compos. 26 (2007) 1065–1070.

DOI: 10.1177/0731684407079347

Google Scholar

[28] D. Zhao, Y. Dong, J. Xu, Y. Yang, K. Fujiwara, E. Suzuki et al., Flexural and hydrothermal aging behavior of silk fabric/glass mat reinforced hybrid composites, Fibers Polym. 17 (2016) 2131–2142.

DOI: 10.1007/s12221-016-6253-x

Google Scholar

[29] M. po Ho and K. tak Lau, Design of an impact resistant glass fibre/epoxy composites using short silk fibres, Mater. Des. 35 (2012) 664–669.

DOI: 10.1016/j.matdes.2011.10.003

Google Scholar

[30] V. Manikandan, J.T. Winowlin Jappes, S.M. Suresh Kumar and P. Amuthakkannan, Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites, Compos. Part B Eng. 43 (2012) 812–818.

DOI: 10.1016/j.compositesb.2011.11.009

Google Scholar

[31] Q. Liu, M.T. Shaw, R.S. Parnas and A.M. McDonnell, Investigation of Basalt Fiber composite mechanical properties for applications in Transportation, Polym. Compos. 27 (2006) 41–48.

DOI: 10.1002/pc.20162

Google Scholar

[32] J. Militký, V. Kovačič and J. Rubnerová, Influence of thermal treatment on tensile failure of basalt fibers, Eng. Fract. Mech. 69 (2002) 1025–1033.

DOI: 10.1016/s0013-7944(01)00119-9

Google Scholar

[33] V. Fiore, G. Di Bella and A. Valenza, Glass-basalt/epoxy hybrid composites for marine applications, Mater. Des. 32 (2011) 2091–(2099).

DOI: 10.1016/j.matdes.2010.11.043

Google Scholar

[34] T. Czigány, Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study, Compos. Sci. Technol. 66 (2006) 3210–3220.

DOI: 10.1016/j.compscitech.2005.07.007

Google Scholar

[35] J.M. Park, W.G. Shin and D.J. Yoon, A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques, Compos. Sci. Technol. 59 (1999) 355–370.

DOI: 10.1016/s0266-3538(98)00085-2

Google Scholar

[36] C. Burgstaller, W. Rüf, W. Stadlbauer, G. Pilz and R.W. Lang, Utilizing unbleached cellulosic fibres in polypropylene matrix composites for injection moulding applications, J. Biobased Mater. Bioenergy 3 (2009) 226–231.

DOI: 10.1166/jbmb.2009.1027

Google Scholar

[37] V. Dhand, G. Mittal, K.Y. Rhee, S.J. Park and D. Hui, A short review on basalt fiber reinforced polymer composites, Compos. Part B Eng. 73 (2015) 166–180.

DOI: 10.1016/j.compositesb.2014.12.011

Google Scholar

[38] S.E. Artemenko and Y.A. Kadykova, Polymer composite materials based on carbon, basalt, and glass fibres, Fibre Chem. 40 (2008) 37–39.

DOI: 10.1007/s10692-008-9010-0

Google Scholar

[39] H. Ismail, P. Pasbakhsh, M.N.A. Fauzi and A. Abu Bakar, Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites, Polym. Test. 27 (2008) 841–850.

DOI: 10.1016/j.polymertesting.2008.06.007

Google Scholar

[40] B. Lecouvet, J.G. Gutierrez, M. Sclavons and C. Bailly, Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites, Polym. Degrad. Stab. 96 (2011) 226–235.

DOI: 10.1016/j.polymdegradstab.2010.11.006

Google Scholar

[41] U.A. Handge, K. Hedicke-Höchstötter and V. Altstädt, Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: Influence of molecular weight on thermal, mechanical and rheological properties, Polymer (Guildf). 51 (2010) 2690–2699.

DOI: 10.1016/j.polymer.2010.04.041

Google Scholar

[42] M. Jawaid and H.P.S. Abdul Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review, Carbohydr. Polym. 86 (2011) 1-18.

DOI: 10.1016/j.carbpol.2011.04.043

Google Scholar

[43] S. Rooj, A. Das, V. Thakur, R.N. Mahaling, A.K. Bhowmick and G. Heinrich, Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes, Mater. Des. 31 (2010) 2151–2156.

DOI: 10.1016/j.matdes.2009.11.009

Google Scholar

[44] H. Dodiuk and S.H. Goodman, Handbook of Thermoset Plastics, (2013).

Google Scholar

[45] H. He, K. Li, J. Wang, G. Sun, Y. Li and J. Wang, Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites, Mater. Des. 32 (2011) 4521–4527.

DOI: 10.1016/j.matdes.2011.03.026

Google Scholar

[46] Y.R. Kim, S.P. McCarthy and J.P. Fanucci, Compressibility and relaxation of fiber reinforcements during composite processing, Polym. Compos. 12 (1991) 13–19.

DOI: 10.1002/pc.750120104

Google Scholar

[47] K. Yang, R.O. Ritchie, Y. Gu, S.J. Wu and J. Guan, High volume-fraction silk fabric reinforcements can improve the key mechanical properties of epoxy resin composites, Mater. Des. 108 (2016) 470–478.

DOI: 10.1016/j.matdes.2016.06.128

Google Scholar

[48] V.K. Patel and A. Dhanola, Influence of CaCO3, Al2O3, and TiO2 microfillers on physico-mechanical properties of Luffa cylindrica/polyester composites, Eng. Sci. Technol. an Int. J. 19 (2016) 676–683.

DOI: 10.1016/j.jestch.2015.10.005

Google Scholar

[49] G. Ravichandran, G. Rathnakar, N. Santhosh, R. Chennakeshanva and M.A. Hashmi, Enhancement of mechanical properties of epoxy/halloysite nanotube (HNT) nanocomposites, SN Appl. Sci. 1 (2019),.

DOI: 10.1007/s42452-019-0323-9

Google Scholar

[50] H.S. Mahadevaswamy and B. Suresha, Role of nano-CaCO3 on mechanical and thermal characteristics of pineapple fibre reinforced epoxy composites, in Materials Today: Proceedings, 22 (2020) 572–579.

DOI: 10.1016/j.matpr.2019.08.211

Google Scholar

[51] G. Yang, Y.J. Heo and S.J. Park, Effect of morphology of calcium carbonate on toughness behavior and thermal stability of epoxy-based composites, Processes 7 (2019) 1-10.

DOI: 10.3390/pr7040178

Google Scholar

[52] Y. Ye, H. Chen, J. Wu and C.M. Chan, Evaluation on the thermal and mechanical properties of HNT-toughened epoxy/carbon fibre composites, Compos. Part B Eng. 42 (2011) 2145–2150.

DOI: 10.1016/j.compositesb.2011.05.010

Google Scholar