The Thermal Destruction and Coke Formation Intensity Influence on the Delamination and Destruction of Fiber Reinforced Plastics with a Unidirectional Filler under High Temperature Conditions

Article Preview

Abstract:

It is made fiber reinforced plastics (FRP) adhesion properties influence analysis on their destruction at an increase of temperature. Taking into account the thermoelastic properties of fiber reinforced plastics, it is proposed an expression for calculating the load of the composition delamination beginning, and a correlation of the destructive stress in monolayer FRP with the temperature of heating is found. It has been established that the further intensity of delamination and destruction of FRP depends on the temperature of the destruction beginning and coke formation intensity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

137-143

Citation:

Online since:

July 2021

Export:

Price:

* - Corresponding Author

[1] P.A. Bilym, A.P. Mihajlyuk, V.S. Nekhaev, K.A. Afanasenko, Izmenenie sostoyaniya epoksifenol'nogo svyazuyushchego v kompozicionnom materiale pod dejstviem kontaktnoj polyarizacii. Vestnik NTU «HPI». Sb. nauch. tr. Tematicheskij vypusk «Himiya, himicheskaya tekhnologiya i ekologiya», Har'kov: NTU «HPI». 14 (2005) 155-159.

Google Scholar

[2] A. Rohumaa, A Yamamoto, C.G. Hunt, C.R. Frihart, M. Hughes, J. Kers, Effect of log soaking and the temperature of peeling on the properties of Rotary-cut birch (Betula pendula Roth) veneer bonded with phenol-formaldehyde adhesive. BioResources. 3 (11) (2016) 5829-5838.

DOI: 10.15376/biores.11.3.5829-5838

Google Scholar

[3] I.A. Shabanova, O.V. Mirgorod, V.V. Taranenkova, A.N. Korogodskaya, V.V. Dejneka (2005). Thermodynamic properties of binary and ternary compounds of CaO-BaO-Al2O3 system. Ogneupory i Tekhnicheskaya Keramika Issue, 1, (2005) 2-6.

Google Scholar

[4] G.S. Holister, K. Tomas, Materialy, uprochnennye voloknami. Per. s angl. Pod red. V.S. Ivanovoj. M.: Metallurgiya. (1969) 149.

Google Scholar

[5] T.I. Sogolova, Uspekhi himii i fiziki polimerov. M.: Himiya. (1970) 232-251.

Google Scholar

[6] V.P. Solomko, Vyazkouprugie svojstva polimerov. Mekhanika polimerov. 6 (1970) 1031-1041.

Google Scholar

[7] Awaja, Firas & Gilbert, Michael & Kelly, Georgina & Fox, Bronwyn & Pigram, Paul. Adhesion of polymers. Progress in Polymer Science. 34 (2009). 948-968. 10.1016/j.progpolymsci.2009.04.007.

DOI: 10.1016/j.progpolymsci.2009.04.007

Google Scholar

[8] Yuxiang Zhang, Jianli Ma, Chengwei Wu, Xiao Han, Wei Zhang, Effects of moisture ingress on the mesoscale mechanical properties of epoxy adhesives under elevated temperature, Polymer Testing, 94 (2021) 107049.

DOI: 10.1016/j.polymertesting.2020.107049

Google Scholar

[9] M. Eftekhari, A. Fatemi, Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects, Polymer Testing. 51 (2016) 151–164.

DOI: 10.1016/j.polymertesting.2016.03.011

Google Scholar

[10] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov (2020), Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[11] G.D. Andreevskaya, Vysokoprochnye orientirovannye stekloplastiki. M.: Nauka, (1966) 370.

Google Scholar

[12] D. Shuster, E. Skala, Monokristal'nye volokna i armirovannye imi materialy. Per. s angl. Pod red. A.T. Tumanova. M.: Mir. (1973) 379-411.

Google Scholar

[13] P. G. Babaevskij, Plastiki konstrukcionnogo naznacheniya (reaktoplasty). Pod red. E. B. Trostyanskoj. M.: Himiya. (1974) 303.

Google Scholar

[14] G.P. Zajcev, V.S. Strelyaev, Raschet na prochnost' konstruktivnyh elementov iz stekloplastikov. M.: Mashinostroenie. (1970) 117.

Google Scholar

[15] N.A. Halturinskij, V.M. Lalayan, A.A. Berlin, Osobennosti goreniya polimernyh kompozicionnyh materialov. Zhurnal Vsesoyuznogo himicheskogo obshchestva im. D.I. Mendeleeva. 5 (34). (1989) 560-566.

Google Scholar

[16] Dubinin et al., Investigation of the effect of carbon monoxide on people in case of fire in a building. Ispitivanje djelovanja ugljičnog monoksida na ljude u slučaju požara u zgradi, Sigurnost, 62 (4), (2020) 347– 357.

DOI: 10.31306/s.62.4.2

Google Scholar

[17] K.A. Afanasenko, P.A. Bіlim, O.P. Mihajlyuk, Do pitannya pro karbonіzacіyu ta vtratu masi sіtchastih polіmerіv pri lіnіjnomu nagrіvі. Problemyi pozharnoy bezopasnosti: Sb. nauch. tr. Harkov: NUGZU. 33 (2013) 13-16.

Google Scholar

[18] V.V. Vasil'ev, V.D. Protasov, V.V. Bolotin i dr, Kompozicionnye materialy: Spravochnik. M.: Mashinostroenie. (1990) 512.

Google Scholar

[19] K. Afanasenko, A. Romin, Y. Klyuchka, V. Lypovyi & K. Hasanov (2020), Epoxidized Dinaphthol Application as the Basis for Binder with Advanced Carbonation Level to Reducing its Flammability. Materials Science Forum, 1006, 41–46.

DOI: 10.4028/www.scientific.net/msf.1006.41

Google Scholar