Development on the Corrosion of Steel Fiber and Prevention in the Ultra-High Performance Concrete (UHPC)

Article Preview

Abstract:

Chloride ions, water, and oxygen could cause the corrosion of steel fiber in the aggressive environment. The corrosion of steel fiber in UHPC is a long-term process and the rate is very slow. As one of the important components of ultra-high performance concrete (UHPC), the corrosion of steel fiber is the result of multiple factors. The characteristics of steel fiber corrosion in UHPC, the factors influencing the corrosion of steel fiber in UHPC (including nanomaterials, curing condition and crack width), and effects of steel fiber corrosion on the UHPC performance (including mechanical properties, matrix rehydration and corrosion of steel bar), are emphatically elaborated. And the control methods of steel fiber corrosion in UHPC are briefly introduced, i.e. hybrid fibers and stainless steel fibers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

358-370

Citation:

Online since:

June 2021

Export:

Price:

* - Corresponding Author

[1] K.L. Scrivener, R.J. Kirkpatrick, Innovation in use and research on cementitious material, Cem. Concr. Res. 38 (2008) 128-136.

Google Scholar

[2] S. Pyo, H.K. Kim, Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder, Constr. Build. Mater. 131 (2017) 459-466.

DOI: 10.1016/j.conbuildmat.2016.10.109

Google Scholar

[3] Information on https://www.sciencedirect.com/science/article/pii/S0950061820300593.

Google Scholar

[4] M. Alkaysi , S. El-Tawil, Z. Liu, et al, Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC), Cem. Concr. Compos. 66 (2016) 47-56.

DOI: 10.1016/j.cemconcomp.2015.11.005

Google Scholar

[5] N. Randl, T. Steiner, S. Ofner, et al, Development of UHPC mixtures from an ecological point of view, Constr. Build. Mater. 67 (2014) 373-378.

DOI: 10.1016/j.conbuildmat.2013.12.102

Google Scholar

[6] M. Zhou, W. Lu, J.W. Song, et al, Application of ultra-high performance concrete in bridge engineering, Constr. Build. Mater. 186 (2018) 1256-1267.

Google Scholar

[7] V. Matte, M. Moranville, F. Adenot, et al, Simulated microstructure and transport properties of ultra-high performance cement-based materials, Cem. Concr. Res. 30 (2000) 1947-1954.

DOI: 10.1016/s0008-8846(00)00288-x

Google Scholar

[8] Y.S. Tai, H.H. Pan, Y.N. Kung, Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800°C, Nucl. Eng. Des. 241 (2011) 2416-2424.

DOI: 10.1016/j.nucengdes.2011.04.008

Google Scholar

[9] Information on https://www.sciencedirect.com/science/article/pii/S0950061819323669.

Google Scholar

[10] K.W. Ng, J. Garder, S. Sritharan, Investigation of ultra high performance concrete piles for integral abutment bridges, Eng. Struct. 105 (2015) 220-230.

DOI: 10.1016/j.engstruct.2015.10.009

Google Scholar

[11] Information on https://www.sciencedirect.com/science/article/pii/S0950061819333008.

Google Scholar

[12] Information on https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201902&filename=1019209126.nh.

Google Scholar

[13] S. Pyo, T. Koh, M. Tafesse, et al, Chloride-induced corrosion of steel fiber near the surface of ultra-high performance concrete and its effect on flexural behavior with various thickness, Constr. Build. Mater. 224 (2019) 206-213.

DOI: 10.1016/j.conbuildmat.2019.07.063

Google Scholar

[14] Information on https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201502&filename=1015900549.nh.

Google Scholar

[15] S. Pyo, M. Tafesse, H. Kim, et al, Effect of chloride content on mechanical properties of ultra high performance concrete, Cem. Concr. Compos. 84 (2017) 175-187.

DOI: 10.1016/j.cemconcomp.2017.09.006

Google Scholar

[16] V. Marcos-Meson, A. Michel, A. Solgaard, et al, Corrosion resistance of steel fibre reinforced concrete - A literature review, Cem. Concr. Res. 103 (2018) 1-20.

DOI: 10.1016/j.cemconres.2017.05.016

Google Scholar

[17] G. Chen, M.N.S. Hadi, D. Gao, et al, Experimental study on the properties of corroded steel fibres, Constr. Build. Mater. 79 (2015) 165-172.

Google Scholar

[18] P.S. Mangat, K. Gurusamy, Corrosion resistance of steel fibres in concrete under marine exposure, Cem. Concr. Res. 18 (1988) 44-54.

DOI: 10.1016/0008-8846(88)90120-2

Google Scholar

[19] J.P. Hwang, M.S. Jung, M. Kim, et al, Corrosion risk of steel fibre in concrete, Constr. Build. Mater. 101 (2015) 239-245.

Google Scholar

[20] J. Liu, B. Zhang, W.H. Qi, et al, Corrosion response of zinc phosphate conversion coating on steel fibers for concrete applications, J. Mater. Res. Technol. 9 (2020) 5912-5921.

DOI: 10.1016/j.jmrt.2020.03.117

Google Scholar

[21] X.G. Zhang, Corrosion and electrochemistry of zinc, Springer, US, (1996).

Google Scholar

[22] S. Abbas, A.M. Soliman, M.L. Nehdi, Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages, Constr. Build. Mater. 75 (2015) 429-441.

DOI: 10.1016/j.conbuildmat.2014.11.017

Google Scholar

[23] R. Hay, C.P. Ostertag, Influence of transverse cracks and interfacial damage on corrosion of steel in concrete with and without fiber hybridization, Corros. Sci. 153 (2019) 213-224.

DOI: 10.1016/j.corsci.2019.03.020

Google Scholar

[24] J.P. Vincler, T. Sanchez, V. Turgeon, et al, A modified accelerated chloride migration tests for UHPC and UHPFRC with PVA and steel fibers, Cem. Concr. Res. 117 (2019) 38-44.

DOI: 10.1016/j.cemconres.2018.12.006

Google Scholar

[25] Information on https://www.sciencedirect.com/science/article/pii/S1359836819335322.

Google Scholar

[26] L.F. De, T. Sedran, Optimization of ultra-high-performance concrete by the use of a packing model, Cem. Concr. Res. 24 (1994) 997-1009.

DOI: 10.1016/0008-8846(94)90022-1

Google Scholar

[27] P. Richard, M. Cheyrezy, Composition of reactive powder concretes, Cem. Concr. Res. 25 (1995) 1501-1511.

DOI: 10.1016/0008-8846(95)00144-2

Google Scholar

[28] J.F. Burroughs, J. Weiss, J.E. Haddock, et al, Influence of high volumes of silica fume on the rheological behavior of oil well cement pastes, Constr. Build. Mater. 203 (2019) 401-407.

DOI: 10.1016/j.conbuildmat.2019.01.027

Google Scholar

[29] M.Z. An, Y. Wang, Z.R. Yu, Damage mechanisms of ultra-high-performance concrete under freeze–thaw cycling in salt solution considering the effect of rehydration, Constr. Build. Mater. 198 (2019) 546-552.

DOI: 10.1016/j.conbuildmat.2018.11.175

Google Scholar

[30] B.G. Han, L.Q. Zhang, S.Z Zeng, et al, Nano-core effect in nano-engineered cementitious composites, Compos. Part A: Appl. Sci. Manuf. 95 (2017) 100-109.

DOI: 10.1016/j.compositesa.2017.01.008

Google Scholar

[31] X.D. He, X.M. Shi, Chloride permeability and microstructure of portland cement mortars incorporating nanomaterials, Transp. Res. Rec.2070 (2008) 13-21.

DOI: 10.3141/2070-03

Google Scholar

[32] D.N. Wang, W. Zhang, Y.F. Ruan, et al, Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete, Constr. Build. Mater. 189 (2018) 487-497.

DOI: 10.1016/j.conbuildmat.2018.09.041

Google Scholar

[33] Information on https://iopscience.iop.org/article/10.1088/2053-1591/aa87db/meta.

Google Scholar

[34] B.G. Han, Z. Li, L.Q. Zhang, et al, Reactive powder concrete reinforced with nano SiO2-coated TiO2, Constr. Build. Mater. 148 (2017) 104-112.

DOI: 10.1016/j.conbuildmat.2017.05.065

Google Scholar

[35] T. Meng, Y.C. Yu, X.Q. Qian, et al, Effect of nano-TiO2 on the mechanical properties of cement mortar, Constr. Build. Mater. 29 (2012) 241-245.

DOI: 10.1016/j.conbuildmat.2011.10.047

Google Scholar

[36] P. Hosseini, A. Booshehrian, A. Madari, Developing concrete recycling strategies by utilization of nano-SiO2 particles, Waste. Biomass. Valorization. 2 (2011) 347-355.

DOI: 10.1007/s12649-011-9071-9

Google Scholar

[37] A. Beglarigale, H. Yazici, Electrochemical corrosion monitoring of steel fiber embedded in cement based composites, Cem. Concr. Compos. 83 (2017) 427-446.

DOI: 10.1016/j.cemconcomp.2017.08.004

Google Scholar

[38] C. Andrade, C. Alonso, Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, Mater. Struct. 37 (2004) 623-643.

DOI: 10.1007/bf02483292

Google Scholar

[39] B. Lothenbach, F. Winnefeld, C. Alder, et al, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes, Cem. Concr. Res. 37 (2007) 483-491.

DOI: 10.1016/j.cemconres.2006.11.016

Google Scholar

[40] K.O. Kjellsen, Heat curing and post-heat curing regimes of high-performance concrete: Influence on microstructure and C-S-H composition, Cem. Concr. Res. 26 (1996) 295-307.

DOI: 10.1016/0008-8846(95)00202-2

Google Scholar

[41] R. Wang, P.M. Wang, X.G. Li, Physical and mechanical properties of styrene–butadiene rubber emulsion modified cement mortars, Cem. Concr. Res. 35 (2005) 900-906.

DOI: 10.1016/j.cemconres.2004.07.012

Google Scholar

[42] A. Çolak, Properties of plain and latex modified portland cement pastes and concretes with and without superplasticizer, Cem. Concr. Res. 35 (2005) 1510-1521.

DOI: 10.1016/j.cemconres.2004.11.012

Google Scholar

[43] J.H. Kim, R.E. Robertson, Prevention of air void formation in polymer-modified cement mortar by pre-wetting, Cem. Concr. Res. 27 (1997) 171-176.

DOI: 10.1016/s0008-8846(97)00001-x

Google Scholar

[44] D.Y. Yoo, K.H. Min, J.H. Lee, et al, Shrinkage and cracking of restrained ultra-high-performance fiber-reinforced concrete slabs at early age, Constr. Build. Mater. 73 (2014) 357-365.

DOI: 10.1016/j.conbuildmat.2014.09.097

Google Scholar

[45] D.Y. Yoo, S. Kim, M.J. Kim, Comparative shrinkage behavior of ultra-high-performance fiber-reinforced concrete under ambient and heat curing conditions, Constr. Build. Mater. 162 (2018) 406-419.

DOI: 10.1016/j.conbuildmat.2017.12.029

Google Scholar

[46] K. Hashimoto, T. Toyoda, H. Yokota, et al, Tension-softening behavior and chloride ion diffusivity of cracked ultra-high strength fiber reinforced concrete, in: RILEM-fib-AFGC International Symposium on Ultra High Performance Fibre-Reinforced Concrete, Marseille, France, 2014, pp.257-264.

DOI: 10.1007/978-3-030-83719-8_82

Google Scholar

[47] R. Zhang, A. Castel, R. François, The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment, Cem. Concr. Res. 39 (2009) 1077-1086.

DOI: 10.1016/j.cemconres.2009.07.025

Google Scholar

[48] J.H. Long, The stick strength between the steel fiber and the base body interface, J. Hefei Univ.Technol:Nat. Sci. Ed. S1 (1999) 3-5.

Google Scholar

[49] C. Frazão, J. Barros, A. Camões, et al, Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete, Cem. Concr. Res. 79 (2016) 112-122.

DOI: 10.1016/j.cemconres.2015.09.005

Google Scholar

[50] N. Banthia, C. Foy, Marine curing of steel fiber composites, J. Mater. Civ. Eng. 1 (1989) 86-96.

DOI: 10.1061/(asce)0899-1561(1989)1:2(86)

Google Scholar

[51] E. Alizade, F.J. Alaee, S. Zabihi, Effect of steel fiber corrosion on mechanical properties of steel fiber reinforced concrete, Asian J. Civ. Eng. 17 (2016) 147-158.

Google Scholar

[52] D.Y. Yoo, J.Y. Gim, B. Chun, Effects of rust layer and corrosion degree on the pullout behavior of steel fibers from ultra-high-performance concrete, J. Mater. Res. Technol. 9 (2020) 3632-3648.

DOI: 10.1016/j.jmrt.2020.01.101

Google Scholar

[53] Information on https://www.sciencedirect.com/science/article/pii/S0958946520300585.

Google Scholar

[54] M.F. Ba, C.X. Qian, X.J. Guo, et al, Effects of steam curing on strength and porous structure of concrete with low water/binder ratio, Constr. Build. Mater. 25 (2011) 123-128.

DOI: 10.1016/j.conbuildmat.2010.06.049

Google Scholar

[55] V. Živica, Effects of the very low water/cement ratio, Constr. Build. Mater. 23 (2009) 3579-3582.

DOI: 10.1016/j.conbuildmat.2009.03.014

Google Scholar

[56] Q.L. Song, R. Yu, Z.H. Shui, et al, Steel fibre content and interconnection induced electrochemical corrosion of ultra-high performance fibre reinforced concrete (UHPFRC), Cem. Concr. Compos. 94 (2018) 191-200.

DOI: 10.1016/j.cemconcomp.2018.09.010

Google Scholar

[57] W.N. Meng, K.H. Khayat, Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar, Compos. B. Eng. 117 (2017) 26-34.

DOI: 10.1016/j.compositesb.2017.02.019

Google Scholar

[58] L. Fan, Y. Bao, W.N. Meng, et al, In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor, Compos. B. Eng. 165 (2019) 679–689.

DOI: 10.1016/j.compositesb.2019.02.051

Google Scholar

[59] V. Vignal, V. Rault, H. Krawiec, et al, Microstructure and corrosion behaviour of deformed pearlitic and brass-coated pearlitic steels in sodium chloride solution, Electrochim. Acta. 203 (2016) 416-425.

DOI: 10.1016/j.electacta.2016.03.005

Google Scholar

[60] A.K. Someh, N. Saeki, The role of galvanic steel fibers in corrosion-protection of reinforced concrete, Proc. Japan. Concr. Inst. 19 (1997) 889-894.

Google Scholar

[61] R. Roque, N. Kim, B. Kim, et al, Durability of fiber-reinforced concrete in florida environments, Florida Department of Transportation, US, (2009).

Google Scholar

[62] F. Tang, G. Chen, R.K. Brow, Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar, Cem. Concr. Res. 82 (2016) 58-73.

DOI: 10.1016/j.cemconres.2015.12.015

Google Scholar

[63] B.R. Andres, H. Karla, D.W. Klaartje, et al, Macrocell corrosion in carbonated portland and portland-fly ash concrete - contribution and mechanism, Cem. Concr. Res. 116 (2019) 273-283.

DOI: 10.1016/j.cemconres.2018.12.005

Google Scholar

[64] M.I. Khan, Y.M. Abbas, G. Fares, Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines, J.King Saud. Univ: Eng. Sci.Ed. 29 (2017) 339-347.

DOI: 10.1016/j.jksues.2017.03.006

Google Scholar

[65] E. Pereira, G. Fischer, J.A.O. Barros, Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites, Cem. Concr. Compos. 34 (2012) 1114-1123.

DOI: 10.1016/j.cemconcomp.2012.08.004

Google Scholar

[66] N. Banthia, N. Nandakumar, Crack growth resistance of hybrid fiber reinforced cement composites, Cem. Concr. Compos. 25 (2003) 3-9.

DOI: 10.1016/s0958-9465(01)00043-9

Google Scholar

[67] K. Hannawi, H. Bian, W. Prince-Agbodjan, et al, Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes, Compos. B. Eng. 86 (2016) 214–220.

DOI: 10.1016/j.compositesb.2015.09.059

Google Scholar

[68] S.T. Kang, B.Y. Lee, J.K. Kim, et al, The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete, Constr. Build. Mater. 25 (2011) 2450-2457.

DOI: 10.1016/j.conbuildmat.2010.11.057

Google Scholar

[69] S.T. Kang, J.I. Choi, K.T. Koh, et al, Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete, Compos. Struct. 145 (2016) 37-42.

DOI: 10.1016/j.compstruct.2016.02.075

Google Scholar

[70] S. Mindess, Developments in the formulation and reinforcement of concrete, CRC Press, US, (2014).

Google Scholar

[71] J.Z. Su, Y.J. Lin, B.C. Chen, et al, Hydrid effects of steel fibers on the uniaxial tensile properties of ultra-high performance concrete, J. Nanchang. Univ: Eng. Technol. Ed. 41 (2019) 358-364.

Google Scholar

[72] K.Z. Ma, L. Liu, C. Liu, et al, Mechanical properties of hybrid steel fiber reinforced high strength concrete, J. Build. Mater. 20 (2017) 261-265.

Google Scholar

[73] L. Bertolini, P. Pedeferri, Laboratory and field experience on the use of stainless steel to improve durability of reinforced concrete, Corros. Rev. 20 (2002) 129-152.

DOI: 10.1515/corrrev.2002.20.1-2.129

Google Scholar

[74] Z.Y. Huang, D. Li, Study on the effect of stainless steel fiber on the performance of ultra-high performance concrete, J. Railway Sci. Eng. 16 (2019) 376-383.

Google Scholar