Effect of Trivalent Metal Cations on the Properties of LDHs Supercapacitors Prepared from Electroplating Sludge

Article Preview

Abstract:

Trivalent metal cations are the basic composition of Layered Double Hydroxides (LDHs), however, the effect of metal cations on the supercapacitor performance of LDHs prepared from electroplating sludge has not been reported. In the present study the acid leaching solution of electroplating sludge was used as raw material, and Cr, Fe, Al and other common metal cations were added into the precursors to investigate the effect of trivalent metal cations on the supercapacitor performance of LDHs prepared from electroplating sludge. The experimental results show that the three kinds of metal cations can inhibit the specific mass capacitance of LDHs, and the sequence of inhibition effect is Fe < Al < Cr. This experiment is expected to provide some references for the resource utilization of electroplating sludge.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

1089-1095

Citation:

Online since:

June 2021

Export:

Price:

* - Corresponding Author

[1] Peng, G., Tian, G. Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge,, CHEM ENG J, 165(2), 388-394 (2010).

DOI: 10.1016/j.cej.2010.10.006

Google Scholar

[2] Weng, C., Sun, X., Han, B., Ye, X., Zhong, Z., Li, W., Liu, W., Deng, H., Lin, Z. Targeted conversion of Ni in electroplating sludge to nickel ferrite nanomaterial with stable lithium storage performance,, J HAZARD MATER, 393, 122296 (2020).

DOI: 10.1016/j.jhazmat.2020.122296

Google Scholar

[3] Mao, L., Wu, Y., Zhang, W., Hu, L., Huang, Q. Effects of electroplating sludge introduction on the morphology, mineral phase and porosity evolution of fired clay bricks,, CONSTR BUILD MATER, 211, 130-138 (2019).

DOI: 10.1016/j.conbuildmat.2019.03.251

Google Scholar

[4] Mao, L., Tang, R., Wang, Y., Guo, Y., Su, P., Zhang, W. Stabilization of electroplating sludge with iron sludge by thermal treatment via incorporating heavy metals into spinel phase,, J CLEAN PROD, 187, 616-624 (2018).

DOI: 10.1016/j.jclepro.2018.03.235

Google Scholar

[5] Nesnow, S., Argus, M., Bergman, H., Chu, K., Frith, C., Helmes, T., Mcgaughy, R., Ray, V., Slaga, T.J., Tennant, R., Weisburger, E. Chemical carcinogens a review and analysis of the literature of selected chemicals and the establishment of the Gene-Tox carcinogen data base: A report of the U.S. environmental protection agency Gene-Tox program,, Mutation Research/Reviews in Genetic Toxicology, 185(1), 1-195 (1987).

DOI: 10.1016/0165-1110(87)90017-0

Google Scholar

[6] Yue, T., Niu, Z., Hu, Y., Han, H., Lyu, D., Sun, W. Cr(III) and Fe(II) recovery from the polymetallic leach solution of electroplating sludge by Cr(III)-Fe(III) coprecipitation on maghemite,, HYDROMETALLURGY, 184, 132-139(2019).

DOI: 10.1016/j.hydromet.2018.11.013

Google Scholar

[7] Pham, M.T., Maitz, M.F., Richter, E., Reuther, H., Prokert, F., Mücklich, A. Electrochemical behaviour of nickel surface-alloyed with copper and titanium,, J ELECTROANAL CHEM, 572(1), 185-193 (2004).

DOI: 10.1016/j.jelechem.2004.06.011

Google Scholar

[8] Bose, S., Bhattacharyya, A.K. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge,, CHEMOSPHERE, 70(7), 1264-1272 (2008).

DOI: 10.1016/j.chemosphere.2007.07.062

Google Scholar

[9] Peng, G., Deng, S., Liu, F., Li, T., Yu, G. Superhigh adsorption of nickel from electroplating wastewater by raw and calcined electroplating sludge waste,, J CLEAN PROD, 246, 118948(2020).

DOI: 10.1016/j.jclepro.2019.118948

Google Scholar

[10] Chou, I., Wang, Y., Chang, C., Wang, C., Kuo, Y. Effect of NaOH on the vitrification process of waste Ni–Cr sludge,, J HAZARD MATER, 185(2), 1522-1527 (2011).

DOI: 10.1016/j.jhazmat.2010.10.079

Google Scholar

[11] Weng, C., Sun, X., Han, B., Ye, X., Zhong, Z., Li, W., Liu, W., Deng, H., Lin, Z. Targeted conversion of Ni in electroplating sludge to nickel ferrite nanomaterial with stable lithium storage performance,, J HAZARD MATER, 393, 122296 (2020).

DOI: 10.1016/j.jhazmat.2020.122296

Google Scholar

[12] Chen, D., Hou, J., Yao, L., Jin, H., Guangren, Q., Xu, Z. Ferrite materials prepared from two industrial wastes: Electroplating sludge and spent pickle liquor,, SEP PURIF TECHNOL, 752010.

DOI: 10.1016/j.seppur.2010.07.009

Google Scholar

[13] Zhou, H., Wu, F., Fang, L., Hu, J., Luo, H., Guan, T., Hu, B., Zhou, M. Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor,, INT J HYDROGEN ENERG, 45(23), 13080-13089 (2020).

DOI: 10.1016/j.ijhydene.2020.03.001

Google Scholar

[14] Chen, W., Wang, J., Ma, K.Y., Li, M., Guo, S.H., Liu, F., Cheng, J.P. Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor,, APPL SURF SCI, 451, 280-288 (2018).

DOI: 10.1016/j.apsusc.2018.04.254

Google Scholar

[15] Qiu, H., Sun, X., An, S., Lan, D., Cui, J., Zhang, Y., He, W. Microwave synthesis of histidine-functionalized graphene quantum dots/Ni-Co LDH with flower ball structure for supercapacitor,, J COLLOID INTERF SCI, 567, 264-273 (2020).

DOI: 10.1016/j.jcis.2020.02.018

Google Scholar

[16] Kong, L., Deng, L., Li, X., Liu, M., Luo, Y., Kang, L. Fabrication of flower-like Ni3(NO3)2(OH)4 and their electrochemical properties evaluation,, MATER RES BULL, 47, 1641-1647 (2012).

DOI: 10.1016/j.materresbull.2012.03.051

Google Scholar

[17] Yu, C., Yang, J., Zhao, C., Fan, X., Gang, W., Qiu, J. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: Understanding the role of nano-structured carbon,, NANOSCALE, 62013.

DOI: 10.1039/c3nr05477b

Google Scholar