Carrier Concentration of CeFe2Al10 as a Candidate of Thermoelectric Material

Article Preview

Abstract:

The study of Hall effect of Kondo semiconductor CeFe2Al10 is reported as a candidate of thermoelectric material used at low temperatures. Single crystals of CeFe2Al10 with orthorhombic crystal structure were grown by Al self-flux method. An anisotropy of the Hall effect is clarified by measuring Hall resistance by changing the direction of electrical current, magnetic field, and voltage respect to all the three crystal axes of orthorhombic crystal structure. The Hall effect of CeFe2Al10 has a strong anisotropy against the direction of magnetic field but weak anisotropy against the directions of current and voltage. The value of carrier concentration indicates that CeFe2Al10 is matallic, which causes a low performance as a thermoelectric material. In order to improve the value of dimensionless figure of merit, the electrons should be doped to CeFe2Al10.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

672-677

Citation:

Online since:

January 2021

Export:

Price:

* - Corresponding Author

[1] A. Menth, E. Buehler and T. H. Geballe, Phys. Rev. Lett., 22 (1969) 295.

Google Scholar

[2] M. Kasaya, F. Iga, K. Negishi, S. Nakai and T. Kasuya, J. Magn. Magn. Mater., 31-34 (1983) 437.

Google Scholar

[3] M. F. Hundley, P. C. Canfield, J. D. Thompson, Z. Fisk, and J. M. Lawrence, Phys. Rev. B 42 (1990) 6842.

Google Scholar

[4] M. Kasaya, K. Katoh, and K. Takegahara, Solid State Commun. 78 (1991) 797.

Google Scholar

[5] T. Takabatake, Y. Nakazawa, and M. Ishikawa, Jpn. J. Appl. Phys. Suppl. 26-3 (1987) 547.

Google Scholar

[6] S. K. Malik and D. T. Adroja, Phys. Rev. B 43 (1991) 6277.

Google Scholar

[7] S. Yoshii, M. Kasaya, H. Takahashi, and N. Mori, Physica B, 223 & 224 (1996) 421.

Google Scholar

[8] Y. Muro, K. Motoya, Y. Saiga, and T. Takabatake, J. Phys. Soc. Japan 78, 083707 (2009).

Google Scholar

[9] V. M. T. Thiede, T. Ebel, and W. Jeitschko, J. Mater. Chem. 8 (1998) 125.

Google Scholar

[10] Y. Kawamura, S. Edamoto, T. Takesaka, T. Nishioka, H. Kato, M. Matsumura, Y.Y. Tokunaga, S. Kambe, and H. Yasuoka, J. Phys. Soc. Japan 79 (2010) 103701.

DOI: 10.1143/jpsj.79.103701

Google Scholar

[11] T. Ishiga, T. Wakita, R. Yoshida, H. Okazaki, K. Tsubota, M. Sunagawa, K. Uenaka, K. Okada, H. Kumigashira, M. Oshima, K. Yutani, Y. Muro, T. Takabatake, Y. Muraoka, and T. Yokoya, J. Phys. Soc. Japan 83 (2014) 094717.

DOI: 10.7566/jpsj.83.094717

Google Scholar

[12] T. Nishioka, Y. Kawamura, T. Takesaka, R. Kobayashi, H. Kato, M. Matsumura, K. Kodama, K. Matsubayashi, and Y. Uwatoko, J. Phys. Soc. Japan 78 (2009) 123705.

DOI: 10.1143/jpsj.78.123705

Google Scholar

[13] S. Kimura, Y. Muro, and T. Takabatake, J. Phys. Soc. Japan 80 (2011) 033702.

Google Scholar

[14] Y. Muro, K. Yutani, J. Kajino, T. Onimaru, and T. Takabatake, J. Korean Phys. Soc. 63 (2013) 508.

Google Scholar