The Influence of Ph on Green Synthesis of Honey-Mediated Silver Nanoparticles

Article Preview

Abstract:

Silver nanoparticles (AgNPs) have become interesting metal nanoparticles for filler composite electroactive bone scaffold due to its favorable electrical conductivity, chemical stability, and antibacterial activity. The green synthesis method was selected to produce AgNPs because of using safer solvents, minimizing dangerous reagents, and providing benign response conditions suitable for medical applications. In this study, AgNPs were prepared by a green synthesis approach using Indonesian wild honey with a wider pH range (5, 8, 11). Based on visual observation, UV-Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) data, increasing pH leads to faster formation of AgNPs and smaller particle size of AgNPs. It was found that the smallest particle size of AgNPs (hydrodynamic diameter is 46.5 nm from DLS result and the actual particle size is 6.3 ± 1.5 nm from TEM result) was generated at pH 11.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

July 2021

Export:

Price:

* - Corresponding Author

[1] I.-M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, and G. Rajakumar, Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications,, Nanoscale Res. Lett., vol. 11, no. 1, p.40, (2016).

DOI: 10.1186/s11671-016-1257-4

Google Scholar

[2] A. Wibowo, G. Cooper, C. Vyas, F. Qulub, R. Suratman, and A. Isra, Fabrication of Polyaniline / Polycaprolactone Electroactive Tissue Scaffold using 3D Printing Method for Bone Healing,, Materials, 13(3), 512, (2020).

DOI: 10.3390/ma13030512

Google Scholar

[3] A. K. Mittal, Y. Chisti, and U. C. Banerjee, Synthesis of metallic nanoparticles using plant extracts,, Biotechnol. Adv., vol. 31, no. 2, p.346–356, (2013).

DOI: 10.1016/j.biotechadv.2013.01.003

Google Scholar

[4] O. V. Kharissova, H. V. R. Dias, B. I. Kharisov, B. O. Pérez, and V. M. J. Pérez, The greener synthesis of nanoparticles,, Trends Biotechnol., vol. 31, no. 4, p.240–248, (2013).

DOI: 10.1016/j.tibtech.2013.01.003

Google Scholar

[5] Y. Riswahyuli, A. Rohman, F. M. C. S. Setyabudi, and S. Raharjo, Characterization of Indonesia wild honey and its potential for authentication and origin distinction,, Food Res., vol. 4, no. 5, p.1670–1680, (2020).

DOI: 10.26656/fr.2017.4(5).105

Google Scholar

[6] N. M. D. M. W. Nayaka, I. Fidrianny, Sukrasno, R. Hartati, and M. Singgih, Antioxidant and antibacterial activities of multiflora honey extracts from the Indonesian Apis cerana bee,, J. Taibah Univ. Med. Sci., vol. 15, no. 3, p.211–217, (2020).

DOI: 10.1016/j.jtumed.2020.04.005

Google Scholar

[7] A. J. González Fá, A. Juan, and M. S. Di Nezio, Synthesis and Characterization of Silver Nanoparticles Prepared with Honey: The Role of Carbohydrates,, Anal. Lett., (2017).

DOI: 10.1080/00032719.2016.1199558

Google Scholar

[8] D. Philip, Honey mediated green synthesis of silver nanoparticles,, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., (2010).

Google Scholar

[9] G. A. Youssef, A. M. El-Boraey, and M. M. Abdel-Tawab, Eco-friendly green synthesis of silver nanoparticles from egyptian honey: Evaluating its antibacterial activities,, Egypt. J. Bot., vol. 59, no. 3, p.709–721, (2019).

DOI: 10.21608/ejbo.2019.6597.1261

Google Scholar

[10] S. Ankanna, T. N. V. K. V. Prasad, E. K. Elumalai, and N. Savithramma, Production of biogenic silver nanoparticles using Boswellia Ovalifoliolata stem bark,, Dig. J. Nanomater. Biostructures, (2010).

Google Scholar

[11] B. Ajitha, Y. Ashok Kumar Reddy, and P. Sreedhara Reddy, Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract,, Mater. Sci. Eng. C, vol. 49, p.373–381, (2015).

DOI: 10.1016/j.msec.2015.01.035

Google Scholar

[12] P. Velmurugan et al., Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens,, Bioprocess Biosyst. Eng., vol. 37, no. 10, p.1935–1943, (2014).

DOI: 10.1007/s00449-014-1169-6

Google Scholar

[13] M. K. El-Bisi, H. M. El-Rafie, M. H. El-Rafie, and A. Hebeish, Honey bee for eco-friendly green synthesis of silver nanoparticles and application to cotton textile,, Egypt. J. Chem., vol. 56, no. 3, p.187–198, (2013).

DOI: 10.21608/ejchem.2013.1107

Google Scholar

[14] K. Roy, C. K. Sarkar, and C. K. Ghosh, Molecular and Biomolecular Spectroscopy Photocatalytic activity of biogenic silver nanoparticles synthesized using potato ( Solanum tuberosum ) infusion,, Spectrochim. ACTA PART A Mol. Biomol. Spectrosc., vol. 146, p.286–291, (2015).

DOI: 10.1016/j.saa.2015.02.058

Google Scholar

[15] M. J. Masarudin, S. M. Cutts, B. J. Evison, D. R. Phillips, and P. J. Pigram, Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: Application to the passive encapsulation of [14C]-doxorubicin,, Nanotechnol. Sci. Appl., (2015).

DOI: 10.2147/nsa.s91785

Google Scholar