Morphological, Thermal and Mechanical Properties of Poly(Lactic Acid)/Cellulose/ Nano-Clay Composite

Article Preview

Abstract:

This research has focused on the effect of modified cellulose and clay on the thermal and mechanical properties of PLA bio-nanocomposite. Cellulose was chemically modified with silane coupling agent in order to enhance compatiblization with PLA. Successful modification was confirmed by Fourier Transform Infrared Spectroscopy and EDX-SEM. PLA was compounded with various amounts and ratios of the modified cellulose and clay by a twin-screw extruder. Thermal properties of the bio-nanocomposites were characterized by Thermogravimetric Analysis and Differential Scanning Calorimetry. Glass transition temperature of the bio-nanocomposite slightly decreased whereas melting temperature remained constant when the amount of both fillers was increased. In addition, crystallization behaviour of PLA has been influenced by the type and amount of the fillers. Clay showed a greater effect on the crystallization of PLA than the modified cellulose and unmodified one, respectively. The flexural modulus of the composite containing equal amount between clay and cellulose was increased with an increasing in fillers contents. But the flexural and impact strength of composite were gradually decreased with an increase in fillers contents. Variation of clay and cellulose ratio resulted in the change of mechanical properties. The composite containing higher ratio between clay:cellulose or cellulose:clay showed a better mechnical properties comparing to the ratio of clay:cellulose equal to 1:1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-338

Citation:

Online since:

August 2020

Export:

Price:

* - Corresponding Author

[1] J.M. Raquez, Y. Habibi, M. Murariu, P. Dubois, Polylactide (PLA)-based nanocomposites, Prog. Polym. Sci. 38 (2013) 1504-1542.

DOI: 10.1016/j.progpolymsci.2013.05.014

Google Scholar

[2] S.S. Ray, M. Okamoto, Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing, Prog. Polym. Sci. 28 (2003) 1539-1641.

DOI: 10.1016/j.progpolymsci.2003.08.002

Google Scholar

[3] L. Petersson, K. Oksman, Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement, Compos. Sci. Technol. 66 (2006) 2187-2196.

DOI: 10.1016/j.compscitech.2005.12.010

Google Scholar

[4] M. Pluta, A. Galeski, M. Alexandre, M.A. Paul, P. Dubois, Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties, J. Appl. Polym. Sci. 86 (2002) 1497-1506.

DOI: 10.1002/app.11309

Google Scholar

[5] B. Li, F.X. Dong, X.L. Wang, J. Yang, D.Y. Wang, Y.Z. Wang, Organically modified rectorite toughened poly (lactic acid): Nanostructures, crystallization and mechanical properties, Eur. Polym. J. 45 (2009) 2996-3003.

DOI: 10.1016/j.eurpolymj.2009.08.015

Google Scholar

[6] L. Petersson, I. Kvien, K. Oksman, Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials, Compos. Sci. Technol. 67 (2007) 2535-2544.

DOI: 10.1016/j.compscitech.2006.12.012

Google Scholar

[7] X. Liu, S. Khor, E. Petinakis, L. Yu, G. Simon, K. Dean, S. Bateman, Effects of hydrophilic fillers on the thermal degradation of poly (lactic acid), Thermochim. Acta 509 (2010) 147-151.

DOI: 10.1016/j.tca.2010.06.015

Google Scholar

[8] E. Fortunati, M. Peltzer, I. Armentano, L. Torre, A. Jiménez, J.M. Kenny, Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites, Carbohyd. Polym. 90 (2012) 948-956.

DOI: 10.1016/j.carbpol.2012.06.025

Google Scholar

[9] A.N. Frone, S. Berlioz, J.F. Chailan, D.M. Panaitescu, Morphology and thermal properties of PLA–cellulose nanofibers composites, Carbohyd. Polym. 91 (2013) 377-384.

DOI: 10.1016/j.carbpol.2012.08.054

Google Scholar

[10] T. Lu, S. Liu, M. Jiang, X. Xu, Y. Wang, Z. Wang, J. Gou, D. Hui, Z. Zhou, Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites, Composites: Part B Eng. 62 (2014) 191-197.

DOI: 10.1016/j.compositesb.2014.02.030

Google Scholar

[11] Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review, Composites: Part A Appl. S.41 (2010) 806-819.

DOI: 10.1016/j.compositesa.2010.03.005

Google Scholar

[12] A.N. Frone, S. Berlioz, J.-F. Chailan, D.M. Panaitescu, D. Donescu, Cellulose fiber‐reinforced polylactic acid, Polym. Composite. 32 (2011) 976-985.

DOI: 10.1002/pc.21116

Google Scholar